Incerto onde
começar?
Track
Certificado
Preparation for Data Science
4.5+
★★★★★
★★★★★
11 avaliações
Intermediate
Track curriculum encompasses a collection of pivotal courses that provide foundational knowledge and skills essential for a successful journey in the field of data science. These courses encompass the comprehensive study of key concepts, tools, and methodologies integral to the realm of data analysis and modeling. Mostre mais
python
Boost your Tech Skills!
with up to 55% off
What you'll get with our subscription:
- Access to 85+ top-rated courses
- AI-driven Learning
- Workspaces for practicing your skills
- Personalized study tracks
- Certificates of completion
Training 2 or more people?
Get your team access to Codefinity courses anytime, anywhere.
Try Codefinity TeamsTrusted by employees of leading companies
Learning track content
Module 2 / NumPy in a Nutshell
In this section we will get acquainted with what the NumPy library is, as well as learn how to create an array.
In this section we will get acquainted with arrays of different dimensions, and understand the difference between them.
In this section we should recall what slices are and learn how to make them for arrays of different dimensions. We shall also learn to refer to elements in an array using their indexes.
In this section we will learn how to reshape arrays and also how to concatenate an array. Moreover we will learn how to sort an array. Also we will learn about such an interesting method that is often used for arrays, namely: copy().
Module 3 / Getting into NumPy Basics
In this project, we will delve into the fundamentals of NumPy, exploring its core features and uncovering the reasons behind its significant impact on scientific computing.
Module 4 / Pandas First Steps
In this section, we'll explore the fundamentals of Series and DataFrame structures. You'll also learn about the distinctions between these two types of structures.
- What is pandas?Preview
- SeriesPreview
- Challenge: Creating a SeriesPreview
- DataFramePreview
- Quiz: Creating a SeriesPreview
- Quiz: Creating a DataFramePreview
- Adding a New ColumnPreview
- Inserting a New ColumnPreview
- Deleting a Row/ColumnPreview
- Quiz: Matching the FunctionsPreview
- Working with ColumnsPreview
- Quiz: Extracting ColumnsPreview
- iloc BasicsPreview
- Challenge: Using ilocPreview
Data can be sourced in various formats, such as CSV, JSON, SQL, HTML, and more. With Pandas, you're not limited to a single format — you can work with data across a multitude of file types. In this chapter, we'll specifically focus on the CSV and TXT formats.
Here, you'll learn how to process raw data by removing extraneous information and managing null values in a dataset.
- Viewing the DataPreview
- Quiz: Using HeadPreview
- Quiz: Head, Tail, and SamplePreview
- Exploring the DatasetPreview
- Column Names and Data TypesPreview
- Finding Null ValuesPreview
- Quiz: Identifying Null ValuesPreview
- Challenge: Dropping Null ValuesPreview
- Challenge: Filling Null ValuesPreview
- Quiz: Null ValuesPreview
- Describing the DataPreview
- max() and min()Preview
- Quiz: Statistical OperationsPreview
- sum() and count()Preview
- Unique ValuesPreview
Module 5 / Advanced Techniques in pandas
This section will teach you how to output specific columns by their titles or indices. Also, you will get acquainted with the ways you can select rows by indices.
Here, you will learn how to extract data that has specific conditions. Also, you will learn how to combine them and even create your own.
In this section, you will expand your knowledge on setting different data conditions. You will learn to check if your data is in a defined list of values or between two values. You will also learn how to find the largest and smallest values.
This section is one of the most fascinating of the course. Here, you will learn how to group data in different ways. It will help you work as a data analyst to find out information on specific data groups.
This section is one of the most significant for a data analyst because if the data contains missing data values in the incorrect format, it will be impossible to work with. Thus, you will learn how to deal with such inappropriate values here.
- Checking for Missing ValuesPreview
- Calculating the Number of Missing ValuesPreview
- What Will We Do With the NaN Values?Preview
- How to Delete Only NaN Values?Preview
- Filling In the Missing ValuesPreview
- Managing Categorical VariablesPreview
- Checking the Column TypePreview
- Managing an Incorrect ColumnPreview
- Renaming the ColumnPreview
Module 6 / Unveiling the Power of Data Manipulation with Pandas
In this project, we are going to understand what Pandas is and why it is so powerful.
Module 7 / Mathematics for Data Analysis and Modeling
Let's start with some basic definitions and concepts we'll use later. Consider the idea of a function, a numerical sequence, and its sum, and also understand what a coordinate system's basis is.
The simplest and most commonly used type of relationship is the linear relationship. Linear algebra is a branch of higher mathematics entirely devoted to linear functions and linear spaces. Let's look at some of the most important topics in linear algebra: vectors, matrices, solving linear equations, and solving the spectral problem for matrices.
- Numerical Operations on Vectors and MatricesPreview
- Challenge: Calculate the Matrix Multiplication ResultPreview
- Matrix DeterminantPreview
- Scaling Factor of the Linear TransformationPreview
- Challenge: Figures' Linear TransformationsPreview
- Inversed and Transposed MatricesPreview
- System of Linear EquationsPreview
- Challenge: Solving the Task Using SLEPreview
- Eigenvalues and EigenvectorsPreview
Mathematical analysis is a discipline that allows you to analyze functions according to various criteria. Consider how to check numerical sequences for convergence, find the maximum/minimum values of functions, solve nonlinear equations, and use integrals to solve applied problems.
Module 8 / Probability Theory Basics
We will start our way of learning probability theory by considering some basic definitions and rules: what is a stochastic experiment and random event, what is independence and incompatibility of events in the context of probability theory, what is the probability and how can we calculate probabilities of different elementary events.
In real-life tasks, we often have to deal with complex relationships and, as a result, calculate probabilities of several events or events that depend on each other. Let's consider how we can do this using probability theory.
To solve many real problems in probability theory, special models have been created that describe a particular situation. Let's consider some of the most used models that can be used to describe some discrete results of stochastic experiments.
What if the result of a stochastic experiment cannot be described by a discrete value? For this, models that work with continuous values are used. Consider the most popular of these models.
Often we are faced with the task of checking the dependence of the results of different stochastic experiments on each other. Moreover, it is necessary not only to assess the presence of dependencies but also to somehow quantify the degree of dependencies. To solve these problems, we can use covariance and correlation.
This section will help us deal with the first real statistical case: finding confidence intervals. It requires knowledge of NumPy, pandas, Matplotlib, and Seaborn library to calculate math formulas and build visualization! To encourage you to pass this section, I want to point out that you will run across a small amount of theory but a significant amount of practice!
An inseparable part of a data analyst's life is conducting hypothesis testing. After completing this section, you will understand the idea behind testing in statistics and will be able to conduct a t-test using Python.
Module 10 / Advanced Probability Theory
Now we will understand some fundamental theoretical concepts which are used in solving real live tasks: absolutely continuous and discrete random variables, probability density function, cumulative distribution function, the characteristics of a random variable, etc.
- Course OverviewPreview
- Absolutely Continuous and Discrete Random VariablesPreview
- Cumulative Distribution Functions and Probability Density FunctionsPreview
- Characteristics of Random VariablesPreview
- Random VectorsPreview
- Useful Properties of the Gaussian DistributionPreview
- Challenge: Detecting Outliers Using 3-Sigma RulePreview
The limit theorems of probability theory are fundamental laws of probability theory that are often used in practice in a wide variety of areas, such as: building confidence intervals, estimating distribution parameters, providing A/B testings, creating ensembles of ML models, etc. Now we will consider two of the most commonly used: the Law of Large Numbers and the Central Limit Theorem.
When we work with real data we usually do not know from which distribution this data was obtained. In order to determine this, we must be able to correctly estimate the parameters of this distribution and the type of distribution, which we will learn to do in this section.
- General population. Samples. Population parameters.Preview
- Momentum estimation. Maximum Likelihood EstimationPreview
- Challenge: Estimate Parameters of Chi-square DistributionPreview
- Unbiased EstimationPreview
- Challenge: Checking Bias of An Estimation Using SimulationPreview
- Consistent EstimationPreview
- Efficient EstimationPreview
- Confidence Intervals for Population ParametersPreview
- Challenge: Confidence Interval for Exponential Distribution ParameterPreview
We have already learned how to estimate the parameters of the population. But to estimate the parameter, we make an assumption about the population distribution. Can we say that our assumption is correct? How do we prove that the estimated parameters are the real parameters of the population? Can we show that two sets of samples are independent? To answer these questions, it is necessary to consider the concept of hypothesis testing.
- What is Statistic Hypothesis? Type 1 and Type 2 ErrorsPreview
- What is P-value?Preview
- Comparing Means of Two Different DatasetsPreview
- Challenge: Using CLT to Compare Mean Values of Non-Gaussian DatasetsPreview
- Challenge: Resampling Approach to Compare Mean Values of the DatasetsPreview
- Testing the Hypothesis of Independence of Two Random VariablesPreview
Requirements
- A computer with a browser - all browsers are supported.
- Your enthusiasm to enhance your tech skills.
- Everything else needed to start learning and practicing is already included in this course.
Over 200,000 5-star ratings and counting
Ruslan Kravchuk
O principal é aprender e não desistir
O material é bom, há muito a aprender, tudo para se tornar melhor e o principal é aprender o que você quer....
Matteo Comune
Graças a eles, estou aprendendo muito…
Graças a eles, estou aprendendo muito mais rápido porque eles ajudam você a entender tudo desde o início. É o melhor site que ajuda pessoas sem conhecimento em TI...
Yuliana Cadavid
óptimo curso para iniciantes
ótimo curso para iniciantes, eles testam o seu conhecimento em cada lição...
Elpunzon
Estou a gostar da minha experiência com a Codefinity…
Estou a gostar da minha experiência de aprendizagem do Python com a Codefinity. A forma de aprendizagem ao meu ritmo é óptima porque posso ajustá-la ao meu horário...
Alexandru Alexandru
É bom aprender com o Codefinity
É bom aprender com o Codefinity. É fácil e tem bons exemplos do que aprendi aqui...
jacob Templet
Easy to follow along with and provides…
É fácil seguir e proporciona desafios no meu dia-a-dia. O desafio mantém-me querendo aprender dia após dia...
Elan
A Codefinity é uma ferramenta de aprendizagem abrangente…
A Codefinity é uma ferramenta de aprendizagem abrangente que ajuda a desenvolver as suas habilidades como engenheiro de software ou cientista de dados. Os exercícios são divertidos...
Thibault
Primeira vez aprendendo a programar
Primeira vez a aprender a programar e conseguindo-o com sucesso com a Codefinity - obrigado...
Adrien Morel
Bem desenhado para iniciantes totais
Bem desenhado para iniciantes totais, progresso incremental e faz-me sentir confiante....
_Gracy
é simplesmente muito bem explicado
é simplesmente perfeitamente bem explicado! Até agora, não tive qualquer dificuldade porque tudo é muito bem gerido...
Ruslan Kravchuk
O principal é aprender e não desistir
O material é bom, há muito a aprender, tudo para se tornar melhor e o principal é aprender o que você quer....
Matteo Comune
Graças a eles, estou aprendendo muito…
Graças a eles, estou aprendendo muito mais rápido porque eles ajudam você a entender tudo desde o início. É o melhor site que ajuda pessoas sem conhecimento em TI...
Yuliana Cadavid
óptimo curso para iniciantes
ótimo curso para iniciantes, eles testam o seu conhecimento em cada lição...
Elpunzon
Estou a gostar da minha experiência com a Codefinity…
Estou a gostar da minha experiência de aprendizagem do Python com a Codefinity. A forma de aprendizagem ao meu ritmo é óptima porque posso ajustá-la ao meu horário...
Alexandru Alexandru
É bom aprender com o Codefinity
É bom aprender com o Codefinity. É fácil e tem bons exemplos do que aprendi aqui...
jacob Templet
Easy to follow along with and provides…
É fácil seguir e proporciona desafios no meu dia-a-dia. O desafio mantém-me querendo aprender dia após dia...
Elan
A Codefinity é uma ferramenta de aprendizagem abrangente…
A Codefinity é uma ferramenta de aprendizagem abrangente que ajuda a desenvolver as suas habilidades como engenheiro de software ou cientista de dados. Os exercícios são divertidos...
Thibault
Primeira vez aprendendo a programar
Primeira vez a aprender a programar e conseguindo-o com sucesso com a Codefinity - obrigado...
Adrien Morel
Bem desenhado para iniciantes totais
Bem desenhado para iniciantes totais, progresso incremental e faz-me sentir confiante....
_Gracy
é simplesmente muito bem explicado
é simplesmente perfeitamente bem explicado! Até agora, não tive qualquer dificuldade porque tudo é muito bem gerido...
Data Engineer
Certificado de Conclusão
Mostre suas habilidades recém-adquiridas. Você merece
Discover more
Learning tracks
Learning tracks
trilha
Somente para Ultimate
TEST TRACK 12
1 Curso
1 Projeto
0 Task
Iniciante
4.0
(5234)
trilha
Somente para Ultimate
Desenvolvimento Web Full Stack
7 Cursos
327 Tarefas
Iniciante
4.6
(56)
trilha
Somente para Ultimate
Torne-se um Desenvolvedor React
5 Cursos
119 Tarefas
Intermediário
4.8
(5)
trilha
Somente para Ultimate
Análise e Visualização de Dados em Python
5 Cursos
134 Tarefas
Iniciante
4.6
(9)
trilha
Somente para Ultimate
SQL do Zero ao Herói
4 Cursos
115 Tarefas
Iniciante
4.8
(90)
trilha
Somente para Ultimate
C++ para Iniciantes
6 Cursos
103 Tarefas
Iniciante
4.4
(17)
trilha
Somente para Ultimate
Python de Zero a Herói
6 Cursos
176 Tarefas
Iniciante
4.7
(293)
trilha
Somente para Ultimate
Fundamentos de Aprendizado de Máquina
4 Cursos
1 Projeto
99 Tarefas
Avançado
4.8
(4)
trilha
Somente para Ultimate
Python: Além do Intermediário
4 Cursos
1 Projeto
121 Tarefas
Iniciante
4.7
(262)
trilha
Somente para Ultimate
Essenciais de Java
6 Cursos
307 Tarefas
Iniciante
4.3
(9)
trilha
Somente para Ultimate
Game Development with Unity
4 Cursos
143 Tarefas
Iniciante
4.6
(7)
trilha
Somente para Ultimate
Torne-se um Desenvolvedor Django
5 Cursos
170 Tarefas
Avançado
4.4
(27)
trilha
Somente para Ultimate
Flask para Leigos
5 Cursos
156 Tarefas
Intermediário
4.5
(31)
trilha
Somente para Ultimate
Fundação de Desenvolvimento Frontend
6 Cursos
287 Tarefas
Intermediário
4.6
(52)
trilha
Somente para Ultimate
Web Developer from Zero to Hero
6 Cursos
227 Tarefas
Iniciante
4.6
(56)
trilha
Somente para Ultimate
Deep Learning Odyssey
2 Cursos
80 Tarefas
Avançado
5.0
(3)
trilha
Somente para Ultimate
Web Development with C#
7 Cursos
293 Tarefas
Iniciante
4.8
(97)
trilha
Somente para Ultimate
TEST E2E TRACK BEGINNER
1 Projeto
0 Task
Iniciante
trilha
Somente para Ultimate
PT Track
2 Cursos
21 Tarefas
Begginer
4.7
(3)
trilha
Somente para Ultimate
Skilled Python BackEnd Developer
5 Cursos
113 Tarefas
Avançado
4.7
(260)
trilha
Somente para Ultimate
Web & Cloud Fundamentals
4 Cursos
123 Tarefas
Iniciante
4.5
(43)
trilha
Somente para Ultimate
Test Recalculate
2 Cursos
0 Task
Iniciante
trilha
Somente para Ultimate
Excel from Zero to Hero
4 Cursos
52 Tarefas
Iniciante
4.5
(33)
trilha
Somente para Ultimate
Data Analyst Foundation
4 Cursos
100 Tarefas
Iniciante
4.7
(110)
trilha
Somente para Ultimate
Full-Stack .NET Developer Journey
13 Cursos
544 Tarefas
Intermediário
4.8
(128)
trilha
Somente para Ultimate
Full-Stack .NET Developer Journey
13 Cursos
544 Tarefas
Intermediário
4.8
(128)
trilha
Somente para Ultimate
Test track with rating
1 Curso
0 Task
Avançado
4.0
(4)
trilha
Somente para Ultimate
TEST TEST TRACK
0 Task
Iniciante
Become a Development expert
- Interactive exercises
- Learning videos
- AI-assistant on all courses
- Workspaces for designing your own projects
Ready to get started?
ProBest intro offer | UltimateA complete experience to kickstart your career | |
---|---|---|
85+ Top-Rated courses | ||
Completion certificates | ||
AI-Assistant in all courses | ||
20+ hands-on Real-world projects | ||
Personalized study tracks | ||
Unlimited workspaces | ||
Boost your Tech Skills!
with up to 55% off
What you'll get with our subscription:
- Access to 85+ top-rated courses
- AI-driven Learning
- Workspaces for practicing your skills
- Personalized study tracks
- Certificates of completion
Training 2 or more people?
Get your team access to Codefinity courses anytime, anywhere.
Try Codefinity Teams