Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Calculating the Number of Missing Values | Preprocessing Data
Advanced Techniques in pandas
course content

Conteúdo do Curso

Advanced Techniques in pandas

Advanced Techniques in pandas

1. Getting Familiar With Indexing and Selecting Data
2. Dealing With Conditions
3. Extracting Data
4. Aggregating Data
5. Preprocessing Data

bookCalculating the Number of Missing Values

It should be noted that it isn't convenient to check each value of the dataset for the NaN. It is more convenient to see the number of missing values to conclude columns where we have NaNs. As you remember, we have two functions to check for the missing values. To calculate the sum, just use the .sum() function. Thus, in general, we have 2 options for outputting the number of NaNs for each column:

Okay, nothing complicated. Let's move on the task.

Tarefa

  1. Calculate the number of missing values for the dataset using one of the mentioned functions.
  2. Output the result.

Try to draw your own conclusions.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 2
toggle bottom row

bookCalculating the Number of Missing Values

It should be noted that it isn't convenient to check each value of the dataset for the NaN. It is more convenient to see the number of missing values to conclude columns where we have NaNs. As you remember, we have two functions to check for the missing values. To calculate the sum, just use the .sum() function. Thus, in general, we have 2 options for outputting the number of NaNs for each column:

Okay, nothing complicated. Let's move on the task.

Tarefa

  1. Calculate the number of missing values for the dataset using one of the mentioned functions.
  2. Output the result.

Try to draw your own conclusions.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 2
toggle bottom row

bookCalculating the Number of Missing Values

It should be noted that it isn't convenient to check each value of the dataset for the NaN. It is more convenient to see the number of missing values to conclude columns where we have NaNs. As you remember, we have two functions to check for the missing values. To calculate the sum, just use the .sum() function. Thus, in general, we have 2 options for outputting the number of NaNs for each column:

Okay, nothing complicated. Let's move on the task.

Tarefa

  1. Calculate the number of missing values for the dataset using one of the mentioned functions.
  2. Output the result.

Try to draw your own conclusions.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

It should be noted that it isn't convenient to check each value of the dataset for the NaN. It is more convenient to see the number of missing values to conclude columns where we have NaNs. As you remember, we have two functions to check for the missing values. To calculate the sum, just use the .sum() function. Thus, in general, we have 2 options for outputting the number of NaNs for each column:

Okay, nothing complicated. Let's move on the task.

Tarefa

  1. Calculate the number of missing values for the dataset using one of the mentioned functions.
  2. Output the result.

Try to draw your own conclusions.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 5. Capítulo 2
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
some-alt