Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Managing an Incorrect Column | Preprocessing Data
Advanced Techniques in pandas
course content

Conteúdo do Curso

Advanced Techniques in pandas

Advanced Techniques in pandas

1. Getting Familiar With Indexing and Selecting Data
2. Dealing With Conditions
3. Extracting Data
4. Aggregating Data
5. Preprocessing Data

bookManaging an Incorrect Column

So, you received the result object. This means that the type of the column is non-numerical, but to calculate necessary values, the column need to be numerical. Let's change that.

  1. Firstly, we need to replace - with .. To do so, you will apply the method .str.replace() to replace the character in the string in the dataset column. The syntax is
    data['column_name'].str.replace('old_symbol','new_symbol')
    In our case, old_symbol is -, and . is the new_symbol;
  2. Then, convert the column to the float data type. To do so, use .astype() method. The syntax is data['column_name'].astype('type').
    In our case, the type is 'float'.

Tarefa

Your task is to:

  1. Follow the algorithm above and firstly replace - with . in the column 'Fare'.
  2. Convert the column 'Fare' to the 'float' data type.
  3. Output the type of the column 'Fare'.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 8
toggle bottom row

bookManaging an Incorrect Column

So, you received the result object. This means that the type of the column is non-numerical, but to calculate necessary values, the column need to be numerical. Let's change that.

  1. Firstly, we need to replace - with .. To do so, you will apply the method .str.replace() to replace the character in the string in the dataset column. The syntax is
    data['column_name'].str.replace('old_symbol','new_symbol')
    In our case, old_symbol is -, and . is the new_symbol;
  2. Then, convert the column to the float data type. To do so, use .astype() method. The syntax is data['column_name'].astype('type').
    In our case, the type is 'float'.

Tarefa

Your task is to:

  1. Follow the algorithm above and firstly replace - with . in the column 'Fare'.
  2. Convert the column 'Fare' to the 'float' data type.
  3. Output the type of the column 'Fare'.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 8
toggle bottom row

bookManaging an Incorrect Column

So, you received the result object. This means that the type of the column is non-numerical, but to calculate necessary values, the column need to be numerical. Let's change that.

  1. Firstly, we need to replace - with .. To do so, you will apply the method .str.replace() to replace the character in the string in the dataset column. The syntax is
    data['column_name'].str.replace('old_symbol','new_symbol')
    In our case, old_symbol is -, and . is the new_symbol;
  2. Then, convert the column to the float data type. To do so, use .astype() method. The syntax is data['column_name'].astype('type').
    In our case, the type is 'float'.

Tarefa

Your task is to:

  1. Follow the algorithm above and firstly replace - with . in the column 'Fare'.
  2. Convert the column 'Fare' to the 'float' data type.
  3. Output the type of the column 'Fare'.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

So, you received the result object. This means that the type of the column is non-numerical, but to calculate necessary values, the column need to be numerical. Let's change that.

  1. Firstly, we need to replace - with .. To do so, you will apply the method .str.replace() to replace the character in the string in the dataset column. The syntax is
    data['column_name'].str.replace('old_symbol','new_symbol')
    In our case, old_symbol is -, and . is the new_symbol;
  2. Then, convert the column to the float data type. To do so, use .astype() method. The syntax is data['column_name'].astype('type').
    In our case, the type is 'float'.

Tarefa

Your task is to:

  1. Follow the algorithm above and firstly replace - with . in the column 'Fare'.
  2. Convert the column 'Fare' to the 'float' data type.
  3. Output the type of the column 'Fare'.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 5. Capítulo 8
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
some-alt