Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Working with Columns | The Very First Steps
Pandas First Steps
course content

Conteúdo do Curso

Pandas First Steps

Pandas First Steps

1. The Very First Steps
2. Reading Files in Pandas
3. Analyzing the Data

bookWorking with Columns

When working with a DataFrame, you can access each column individually. Here's the syntax for doing so:

To clarify this syntax:

  • Start by writing the name of the DataFrame you're working with;
  • Next, place the column name you want to access inside square brackets. Remember to enclose the column name in quotation marks.

Let's look at an example using a DataFrame.

123456789
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) capitals = countries['capital'] print(capitals)
copy

Executing this code will display just the column containing capital cities, rather than the entire DataFrame.

You can also access multiple columns like this:

Compared to accessing a single column, there is only one difference. This time, you'll need to put the list of column names inside an additional set of square brackets — meaning you'll use double square brackets. Check out the example below.

12345678
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) columns = countries[['country', 'capital']] print(columns)
copy
Tarefa
test

Swipe to show code editor

Retrieve the columns 'model', 'year', and 'price' (in that order) from the audi_cars DataFrame. Give it a try!

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 11
toggle bottom row

bookWorking with Columns

When working with a DataFrame, you can access each column individually. Here's the syntax for doing so:

To clarify this syntax:

  • Start by writing the name of the DataFrame you're working with;
  • Next, place the column name you want to access inside square brackets. Remember to enclose the column name in quotation marks.

Let's look at an example using a DataFrame.

123456789
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) capitals = countries['capital'] print(capitals)
copy

Executing this code will display just the column containing capital cities, rather than the entire DataFrame.

You can also access multiple columns like this:

Compared to accessing a single column, there is only one difference. This time, you'll need to put the list of column names inside an additional set of square brackets — meaning you'll use double square brackets. Check out the example below.

12345678
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) columns = countries[['country', 'capital']] print(columns)
copy
Tarefa
test

Swipe to show code editor

Retrieve the columns 'model', 'year', and 'price' (in that order) from the audi_cars DataFrame. Give it a try!

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 11
toggle bottom row

bookWorking with Columns

When working with a DataFrame, you can access each column individually. Here's the syntax for doing so:

To clarify this syntax:

  • Start by writing the name of the DataFrame you're working with;
  • Next, place the column name you want to access inside square brackets. Remember to enclose the column name in quotation marks.

Let's look at an example using a DataFrame.

123456789
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) capitals = countries['capital'] print(capitals)
copy

Executing this code will display just the column containing capital cities, rather than the entire DataFrame.

You can also access multiple columns like this:

Compared to accessing a single column, there is only one difference. This time, you'll need to put the list of column names inside an additional set of square brackets — meaning you'll use double square brackets. Check out the example below.

12345678
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) columns = countries[['country', 'capital']] print(columns)
copy
Tarefa
test

Swipe to show code editor

Retrieve the columns 'model', 'year', and 'price' (in that order) from the audi_cars DataFrame. Give it a try!

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

When working with a DataFrame, you can access each column individually. Here's the syntax for doing so:

To clarify this syntax:

  • Start by writing the name of the DataFrame you're working with;
  • Next, place the column name you want to access inside square brackets. Remember to enclose the column name in quotation marks.

Let's look at an example using a DataFrame.

123456789
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) capitals = countries['capital'] print(capitals)
copy

Executing this code will display just the column containing capital cities, rather than the entire DataFrame.

You can also access multiple columns like this:

Compared to accessing a single column, there is only one difference. This time, you'll need to put the list of column names inside an additional set of square brackets — meaning you'll use double square brackets. Check out the example below.

12345678
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) columns = countries[['country', 'capital']] print(columns)
copy
Tarefa
test

Swipe to show code editor

Retrieve the columns 'model', 'year', and 'price' (in that order) from the audi_cars DataFrame. Give it a try!

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 1. Capítulo 11
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
We're sorry to hear that something went wrong. What happened?
some-alt