Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Building Linear Regression Using NumPy | Simple Linear Regression
Linear Regression with Python
course content

Contenido del Curso

Linear Regression with Python

Linear Regression with Python

1. Simple Linear Regression
2. Multiple Linear Regression
3. Polynomial Regression
4. Choosing The Best Model

book
Building Linear Regression Using NumPy

You already know what simple linear regression is and how to find the line that fits the data best. Let's go through all the steps of building a linear regression for a real dataset.

Loading data

We have a file, simple_height_data.csv, with the data from our examples. Let's load the file and take a look at it.

123456
import pandas as pd file_link = 'https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/simple_height_data.csv' df = pd.read_csv(file_link) # Read the file print(df.head()) # Print the first 5 instances from a dataset
copy

So the dataset has two columns, one is 'Height', which is our target, and the second column, 'Father', is the father's height. That is our feature.
Let's assign our target values to the y variable and feature values to X and build a scatterplot.

12345678910
import pandas as pd import matplotlib.pyplot as plt file_link = 'https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/simple_height_data.csv' df = pd.read_csv(file_link) # Read the file X = df['Father'] # Assign the feature y = df['Height'] # Assign the target plt.scatter(X,y) # Build scatterplot plt.show()
copy

Finding parameters

Now, NumPy has a nice function to find the parameters of linear regression.

Linear Regression is a Polynomial Regression of degree 1(we will talk about Polynomial Regression in later sections). That's why we need to put deg=1 to get the parameters for the linear regression.
Here is an example:

12345678910
import pandas as pd import numpy as np file_link = 'https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/simple_height_data.csv' df = pd.read_csv(file_link) # Read the files X, y = df['Father'], df['Height'] # Assign the variables beta_1, beta_0 = np.polyfit(X, y, 1) # Get the parameters print('beta_0 is', beta_0) print('beta_1 is', beta_1)
copy

Note

If you are unfamiliar with the syntax beta_1, beta_0 = np.polyfit(X,y,1), that is called unpacking.
If you have an iterator (e.g., list or NumPy array or pandas series) that has two items writing

is the same as

And since the return of a polyfit() function is a NumPy array with two values, we are allowed to do that

Making the predictions

Now we can plot the line and predict new variables using the parameters.

123456789101112
import pandas as pd import numpy as np import matplotlib.pyplot as plt file_link = 'https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/simple_height_data.csv' df = pd.read_csv(file_link) # Read the file X, y = df['Father'], df['Height'] # Assign the variables beta_1, beta_0 = np.polyfit(X, y, 1) # Get the parameters plt.scatter(X,y) # Build a scatter plot plt.plot(X, beta_0 + beta_1 * X) # Plot the line
copy

Now that we have the parameters, we can use the linear regression equation to predict new values.

1234567891011
import pandas as pd import numpy as np import matplotlib.pyplot as plt file_link = 'https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/simple_height_data.csv' df = pd.read_csv(file_link) # Read the file X, y = df['Father'], df['Height'] # Assign the variables beta_1, beta_0 = np.polyfit(X, y, 1) # Get the parameters X_new = np.array([65, 70, 75]) # Feature values of new instances y_pred = beta_0 + beta_1 * X_new # Predict the target print('Predicted y: ', y_pred)
copy

So it is pretty easy to get the parameters of the linear regression. But some libraries can also give you some extra information. Let's look at one such library.

You can find the parameters of Simple Linear Regression using the numpy's function:

You can find the parameters of Simple Linear Regression using the numpy's function:

Selecciona la respuesta correcta

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 3
We're sorry to hear that something went wrong. What happened?
some-alt