Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Predicting Prices Using Two Features | Multiple Linear Regression
Linear Regression with Python

Desliza para mostrar el menú

book
Challenge: Predicting Prices Using Two Features

For this challenge, the same housing dataset will be used. However, now it has two features: age and area of the house (columns 'age' and 'square_feet').

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
copy

Your task is to build a Multiple Linear Regression model using the OLS class. Also, you will print the summary table to look at the p-values of each feature.

Tarea

Swipe to start coding

  1. Assign the 'age' and 'square_feet' columns of df to X.
  2. Preprocess the X for the OLS's class constructor.
  3. Build and train the model using the OLS class.
  4. Preprocess the X_new array the same as X.
  5. Predict the target for X_new.
  6. Print the model's summary table.

Solución

If you did everything right, you got the p-values close to zero. That means all our features are significant for the model.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 5
Lamentamos que algo salió mal. ¿Qué pasó?

Pregunte a AI

expand
ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

book
Challenge: Predicting Prices Using Two Features

For this challenge, the same housing dataset will be used. However, now it has two features: age and area of the house (columns 'age' and 'square_feet').

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
copy

Your task is to build a Multiple Linear Regression model using the OLS class. Also, you will print the summary table to look at the p-values of each feature.

Tarea

Swipe to start coding

  1. Assign the 'age' and 'square_feet' columns of df to X.
  2. Preprocess the X for the OLS's class constructor.
  3. Build and train the model using the OLS class.
  4. Preprocess the X_new array the same as X.
  5. Predict the target for X_new.
  6. Print the model's summary table.

Solución

If you did everything right, you got the p-values close to zero. That means all our features are significant for the model.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 5
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Lamentamos que algo salió mal. ¿Qué pasó?
some-alt