Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Building Multiple Linear Regression | Multiple Linear Regression
Linear Regression with Python
course content

Contenido del Curso

Linear Regression with Python

Linear Regression with Python

1. Simple Linear Regression
2. Multiple Linear Regression
3. Polynomial Regression
4. Choosing The Best Model

book
Building Multiple Linear Regression

The OLS class allows you to build Multiple Linear Regression the same way as Simple Linear Regression. But unfortunately, the np.polyfit() function does not handle the multiple features case.

We will stick with the OLS class.

Building X̃ matrix

We have the same dataset from the simple linear regression example, but it now has the mother's height as the second feature. Let's load it and look at its X variable.

123456789
import pandas as pd import statsmodels.api as sm file_link='https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/heights_two_feature.csv' df = pd.read_csv(file_link) # Open the file # Assign the variables X = df[['Father', 'Mother']] y = df['Height'] print(X.head())
copy

Remember, we should use OLS(y, X_tilde) to initialize the OLS object. As you can see, the X variable already holds two features in separate columns. So to get the X_tilde, we only need to add 1s as a first column. The sm.add_constant(X) function is doing exactly that!

1234567891011
import pandas as pd import statsmodels.api as sm file_link='https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/heights_two_feature.csv' df = pd.read_csv(file_link) # Open the file # Assign the variables X = df[['Father', 'Mother']] y = df['Height'] # Create X_tilde X_tilde = sm.add_constant(X) print(X_tilde.head())
copy

Finding the parameters

Great! Now we can build the model, find the parameters and make predictions the same way we did in the previous section.

12345678910111213141516171819202122
import pandas as pd import statsmodels.api as sm import numpy as np file_link='https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/heights_two_feature.csv' df = pd.read_csv(file_link) # Open the file X,y = df[['Father', 'Mother']], df['Height'] # Assign the variables X_tilde = sm.add_constant(X) # Create X_tilde # Initialize an OLS object regression_model = sm.OLS(y, X_tilde) # Train the object regression_model = regression_model.fit() # Get the paramters beta_0, beta_1, beta_2 = regression_model.params print('beta_0 is: ', beta_0) print('beta_1 is: ', beta_1) print('beta_2 is: ', beta_2) # Predict new values X_new = np.array([[65, 62],[70, 65],[75, 70]]) # Feature values of new instances X_new_tilde = sm.add_constant(X_new) # Preprocess X_new y_pred = regression_model.predict(X_new_tilde) # Predict the target print('Predictions:', y_pred)
copy

Note

Now that our training set has 2 features, we need to provide 2 features for each new instance we want to predict. That's why np.array([[65, 62],[70, 65],[75, 70]]) was used in the example above. It predicts y for 3 new instances: [Father:65,Mother:62], [Father:70, Mother:65], [Father:75, Mother:70]

What does the `sm.add_constant(X)` do?

What does the sm.add_constant(X) do?

Selecciona la respuesta correcta

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 3
We're sorry to hear that something went wrong. What happened?
some-alt