Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Array Concatenation | Commonly used NumPy Functions
Ultimate NumPy
course content

Contenido del Curso

Ultimate NumPy

Ultimate NumPy

1. NumPy Basics
2. Indexing and Slicing
3. Commonly used NumPy Functions
4. Math with NumPy

bookArray Concatenation

Array concatenation is a fundamental operation in NumPy that allows combining arrays along a specified axis to create larger, more comprehensive datasets. Essentially, concatenation involves joining arrays together to form a new array.

NumPy has a concatenate() function that enables you to concatenate arrays along a specified axis:

  • axis=0 (the default value) concatenates the arrays by rows;
  • axis=1 concatenates the arrays by columns.

The first parameter of this function is the sequence of arrays (a tuple or list of arrays) to concatenate, while axis is the second parameter.

Here is an example with 1D arrays:

123456
import numpy as np array1 = np.array([1, 2, 3]) array2 = np.array([4, 5, 6]) # Concatenating 1D arrays along their only axis 0 concatenated_array = np.concatenate((array1, array2)) print(concatenated_array)
copy

As you can see, with 1D arrays, everything is quite simple. Concatenation creates a 1D array with the elements of the first array followed by the elements of the second array.

Now let’s concatenate 2D arrays:

123456789
import numpy as np array1 = np.array([[1, 2], [3, 4]]) array2 = np.array([[5, 6], [7, 8]]) # Concatenating along the axis 0 (rows) concatenated_array_rows = np.concatenate((array1, array2)) print(f'Axis = 0:\n{concatenated_array_rows}') # Concatenating along the axis 1 (columns) concatenated_array_columns = np.concatenate((array1, array2), axis=1) print(f'Axis = 1:\n{concatenated_array_columns}')
copy

Here is the visualization:

The purple elements correspond to array1, and the green ones to array2.

In fact, we can concatenate any number of arrays, and it will work the same way.

Tarea

Your task is to concatenate the sales data for both products by columns:

  1. Use the correct function for concatenation.
  2. Use sales_data_2021 and sales_data_2022 in this order for concatenation.
  3. Specify the second keyword argument correctly to concatenate by columns.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 6
toggle bottom row

bookArray Concatenation

Array concatenation is a fundamental operation in NumPy that allows combining arrays along a specified axis to create larger, more comprehensive datasets. Essentially, concatenation involves joining arrays together to form a new array.

NumPy has a concatenate() function that enables you to concatenate arrays along a specified axis:

  • axis=0 (the default value) concatenates the arrays by rows;
  • axis=1 concatenates the arrays by columns.

The first parameter of this function is the sequence of arrays (a tuple or list of arrays) to concatenate, while axis is the second parameter.

Here is an example with 1D arrays:

123456
import numpy as np array1 = np.array([1, 2, 3]) array2 = np.array([4, 5, 6]) # Concatenating 1D arrays along their only axis 0 concatenated_array = np.concatenate((array1, array2)) print(concatenated_array)
copy

As you can see, with 1D arrays, everything is quite simple. Concatenation creates a 1D array with the elements of the first array followed by the elements of the second array.

Now let’s concatenate 2D arrays:

123456789
import numpy as np array1 = np.array([[1, 2], [3, 4]]) array2 = np.array([[5, 6], [7, 8]]) # Concatenating along the axis 0 (rows) concatenated_array_rows = np.concatenate((array1, array2)) print(f'Axis = 0:\n{concatenated_array_rows}') # Concatenating along the axis 1 (columns) concatenated_array_columns = np.concatenate((array1, array2), axis=1) print(f'Axis = 1:\n{concatenated_array_columns}')
copy

Here is the visualization:

The purple elements correspond to array1, and the green ones to array2.

In fact, we can concatenate any number of arrays, and it will work the same way.

Tarea

Your task is to concatenate the sales data for both products by columns:

  1. Use the correct function for concatenation.
  2. Use sales_data_2021 and sales_data_2022 in this order for concatenation.
  3. Specify the second keyword argument correctly to concatenate by columns.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 6
toggle bottom row

bookArray Concatenation

Array concatenation is a fundamental operation in NumPy that allows combining arrays along a specified axis to create larger, more comprehensive datasets. Essentially, concatenation involves joining arrays together to form a new array.

NumPy has a concatenate() function that enables you to concatenate arrays along a specified axis:

  • axis=0 (the default value) concatenates the arrays by rows;
  • axis=1 concatenates the arrays by columns.

The first parameter of this function is the sequence of arrays (a tuple or list of arrays) to concatenate, while axis is the second parameter.

Here is an example with 1D arrays:

123456
import numpy as np array1 = np.array([1, 2, 3]) array2 = np.array([4, 5, 6]) # Concatenating 1D arrays along their only axis 0 concatenated_array = np.concatenate((array1, array2)) print(concatenated_array)
copy

As you can see, with 1D arrays, everything is quite simple. Concatenation creates a 1D array with the elements of the first array followed by the elements of the second array.

Now let’s concatenate 2D arrays:

123456789
import numpy as np array1 = np.array([[1, 2], [3, 4]]) array2 = np.array([[5, 6], [7, 8]]) # Concatenating along the axis 0 (rows) concatenated_array_rows = np.concatenate((array1, array2)) print(f'Axis = 0:\n{concatenated_array_rows}') # Concatenating along the axis 1 (columns) concatenated_array_columns = np.concatenate((array1, array2), axis=1) print(f'Axis = 1:\n{concatenated_array_columns}')
copy

Here is the visualization:

The purple elements correspond to array1, and the green ones to array2.

In fact, we can concatenate any number of arrays, and it will work the same way.

Tarea

Your task is to concatenate the sales data for both products by columns:

  1. Use the correct function for concatenation.
  2. Use sales_data_2021 and sales_data_2022 in this order for concatenation.
  3. Specify the second keyword argument correctly to concatenate by columns.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Array concatenation is a fundamental operation in NumPy that allows combining arrays along a specified axis to create larger, more comprehensive datasets. Essentially, concatenation involves joining arrays together to form a new array.

NumPy has a concatenate() function that enables you to concatenate arrays along a specified axis:

  • axis=0 (the default value) concatenates the arrays by rows;
  • axis=1 concatenates the arrays by columns.

The first parameter of this function is the sequence of arrays (a tuple or list of arrays) to concatenate, while axis is the second parameter.

Here is an example with 1D arrays:

123456
import numpy as np array1 = np.array([1, 2, 3]) array2 = np.array([4, 5, 6]) # Concatenating 1D arrays along their only axis 0 concatenated_array = np.concatenate((array1, array2)) print(concatenated_array)
copy

As you can see, with 1D arrays, everything is quite simple. Concatenation creates a 1D array with the elements of the first array followed by the elements of the second array.

Now let’s concatenate 2D arrays:

123456789
import numpy as np array1 = np.array([[1, 2], [3, 4]]) array2 = np.array([[5, 6], [7, 8]]) # Concatenating along the axis 0 (rows) concatenated_array_rows = np.concatenate((array1, array2)) print(f'Axis = 0:\n{concatenated_array_rows}') # Concatenating along the axis 1 (columns) concatenated_array_columns = np.concatenate((array1, array2), axis=1) print(f'Axis = 1:\n{concatenated_array_columns}')
copy

Here is the visualization:

The purple elements correspond to array1, and the green ones to array2.

In fact, we can concatenate any number of arrays, and it will work the same way.

Tarea

Your task is to concatenate the sales data for both products by columns:

  1. Use the correct function for concatenation.
  2. Use sales_data_2021 and sales_data_2022 in this order for concatenation.
  3. Specify the second keyword argument correctly to concatenate by columns.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 3. Capítulo 6
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
some-alt