Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Assigning Values to Indexed Subarrays | Indexing and Slicing
Ultimate NumPy
course content

Contenido del Curso

Ultimate NumPy

Ultimate NumPy

1. NumPy Basics
2. Indexing and Slicing
3. Commonly used NumPy Functions
4. Math with NumPy

book
Assigning Values to Indexed Subarrays

With indexed arrays, things start getting more interesting. Here we'll focus on 1D and 2D subarrays, as 3D subarrays are rarely used in practice.

Let's first start with assigning values to slices. The general syntax looks like this: slice = values, where slice is a slice of a certain array and values are the values to be assigned.

Possible formats of values:

  • a single scalar (number);
  • a 1D array of the same size as the slice (if it is 1D); or the size of the second dimension (if the slice is 2D);
  • a 2D array of the same shape as a 2D slice.
123456789101112131415161718
import numpy as np array_1d = np.array([1, 4, 6, 2, 9]) # Assigning an array to the slice of array_1d array_1d[1:-1] = np.array([3, 5, 7]) print(array_1d) # Assigning a scalar to the slice of array_1d array_1d[1:-1] = 5 print(array_1d) array_2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # Assigning a 2D array to the slice of array_2d array_2d[1:3, 1:] = np.array([[20, 21], [40, 41]]) print(array_2d) # Assigning a 1D array to the slice of array_2d array_2d[1:3, 1:] = [50, 51] print(array_2d) # Assigning a scalar to the slice of array_2d array_2d[1:3, 1:] = 30 print(array_2d)
copy

When we assign a scalar to a 1D slice, this scalar is assigned to every element of the slice. When a 1D array is assigned to a 2D slice, this 1D array is assigned to every 1D array in the slice. Assigning a scalar to a 2D slice works the same as with a 1D slice.

Assigning values to integer array indexed subarrays works the same way as with slices. Assigning values to boolean indexed subarrays works the same way as with 1D slices.

Tarea
test

Swipe to begin your solution

You are managing a dataset of product prices and ratings. The prices are stored in the prices array, and the ratings (out of 10) are stored in the ratings array, where each row represents a different product category. Your task is to update the prices and ratings based on specific criteria:

  1. Assign the value of 20 to every element in prices greater than 10 (boolean indexing) using a scalar.
  2. Assign a NumPy array with elements 9, 8 to the last two elements of the second row (second 1D array) of ratings. Use a positive row index and a slice specifying only start (positive index).

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 10
toggle bottom row

book
Assigning Values to Indexed Subarrays

With indexed arrays, things start getting more interesting. Here we'll focus on 1D and 2D subarrays, as 3D subarrays are rarely used in practice.

Let's first start with assigning values to slices. The general syntax looks like this: slice = values, where slice is a slice of a certain array and values are the values to be assigned.

Possible formats of values:

  • a single scalar (number);
  • a 1D array of the same size as the slice (if it is 1D); or the size of the second dimension (if the slice is 2D);
  • a 2D array of the same shape as a 2D slice.
123456789101112131415161718
import numpy as np array_1d = np.array([1, 4, 6, 2, 9]) # Assigning an array to the slice of array_1d array_1d[1:-1] = np.array([3, 5, 7]) print(array_1d) # Assigning a scalar to the slice of array_1d array_1d[1:-1] = 5 print(array_1d) array_2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # Assigning a 2D array to the slice of array_2d array_2d[1:3, 1:] = np.array([[20, 21], [40, 41]]) print(array_2d) # Assigning a 1D array to the slice of array_2d array_2d[1:3, 1:] = [50, 51] print(array_2d) # Assigning a scalar to the slice of array_2d array_2d[1:3, 1:] = 30 print(array_2d)
copy

When we assign a scalar to a 1D slice, this scalar is assigned to every element of the slice. When a 1D array is assigned to a 2D slice, this 1D array is assigned to every 1D array in the slice. Assigning a scalar to a 2D slice works the same as with a 1D slice.

Assigning values to integer array indexed subarrays works the same way as with slices. Assigning values to boolean indexed subarrays works the same way as with 1D slices.

Tarea
test

Swipe to begin your solution

You are managing a dataset of product prices and ratings. The prices are stored in the prices array, and the ratings (out of 10) are stored in the ratings array, where each row represents a different product category. Your task is to update the prices and ratings based on specific criteria:

  1. Assign the value of 20 to every element in prices greater than 10 (boolean indexing) using a scalar.
  2. Assign a NumPy array with elements 9, 8 to the last two elements of the second row (second 1D array) of ratings. Use a positive row index and a slice specifying only start (positive index).

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 10
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
We're sorry to hear that something went wrong. What happened?
some-alt