Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Creating Higher Dimensional Arrays | NumPy Basics
Ultimate NumPy
course content

Contenido del Curso

Ultimate NumPy

Ultimate NumPy

1. NumPy Basics
2. Indexing and Slicing
3. Commonly used NumPy Functions
4. Math with NumPy

book
Creating Higher Dimensional Arrays

2D Arrays

Let's now create a higher dimensional array, namely a 2D array:

1234
import numpy as np # Creating a 2D array array_2d = np.array([[1, 2, 3], [4, 5, 6]]) print(f'2-dimensional array: \n{array_2d}')
copy

Basically, creating a higher-dimensional NumPy array involves passing a higher-dimensional list as the argument of the array() function.

Note

Any NumPy array object is called an ndarray.

Here is a visualization of our 2D array:

We can think of it as a 2x3 matrix.

3D Array

Creating 3D arrays is nearly identical to creating 2D arrays. The only difference is that we now need to pass a 3D list as an argument:

12345678
import numpy as np # Creating a 3D array array_3d = np.array([ [[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[10, 11, 12], [13, 14, 15], [16, 17, 18]], [[19, 20, 21], [22, 23, 24], [25, 26, 27]] ]) print(f'3-dimensional array: \n{array_3d}')
copy

However, visualizing a 3D array is a bit more complex, but it can still be done:

The array is 3x3x3, which is why we have a cube with each side equal to 3.

In practice, the approach to handling 3D and higher-dimensional arrays is no different from handling 2D arrays.

Tarea
test

Swipe to begin your solution

Create a 2D array using lists. This array can have any number of rows and columns, with arbitrary values.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 3
toggle bottom row

book
Creating Higher Dimensional Arrays

2D Arrays

Let's now create a higher dimensional array, namely a 2D array:

1234
import numpy as np # Creating a 2D array array_2d = np.array([[1, 2, 3], [4, 5, 6]]) print(f'2-dimensional array: \n{array_2d}')
copy

Basically, creating a higher-dimensional NumPy array involves passing a higher-dimensional list as the argument of the array() function.

Note

Any NumPy array object is called an ndarray.

Here is a visualization of our 2D array:

We can think of it as a 2x3 matrix.

3D Array

Creating 3D arrays is nearly identical to creating 2D arrays. The only difference is that we now need to pass a 3D list as an argument:

12345678
import numpy as np # Creating a 3D array array_3d = np.array([ [[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[10, 11, 12], [13, 14, 15], [16, 17, 18]], [[19, 20, 21], [22, 23, 24], [25, 26, 27]] ]) print(f'3-dimensional array: \n{array_3d}')
copy

However, visualizing a 3D array is a bit more complex, but it can still be done:

The array is 3x3x3, which is why we have a cube with each side equal to 3.

In practice, the approach to handling 3D and higher-dimensional arrays is no different from handling 2D arrays.

Tarea
test

Swipe to begin your solution

Create a 2D array using lists. This array can have any number of rows and columns, with arbitrary values.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 3
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
We're sorry to hear that something went wrong. What happened?
some-alt