Creating Higher Dimensional Arrays
2D Arrays
Let's now create a higher dimensional array, namely a 2D array:
1234import numpy as np # Creating a 2D array array_2d = np.array([[1, 2, 3], [4, 5, 6]]) print(f'2-dimensional array: \n{array_2d}')
Basically, creating a higher-dimensional NumPy array involves passing a higher-dimensional list as the argument of the array()
function.
Note
Any NumPy array object is called an
ndarray
.
Here is a visualization of our 2D array:
We can think of it as a 2x3
matrix.
3D Array
Creating 3D arrays is nearly identical to creating 2D arrays. The only difference is that we now need to pass a 3D list as an argument:
12345678import numpy as np # Creating a 3D array array_3d = np.array([ [[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[10, 11, 12], [13, 14, 15], [16, 17, 18]], [[19, 20, 21], [22, 23, 24], [25, 26, 27]] ]) print(f'3-dimensional array: \n{array_3d}')
However, visualizing a 3D array is a bit more complex, but it can still be done:
The array is 3x3x3
, which is why we have a cube with each side equal to 3.
In practice, the approach to handling 3D and higher-dimensional arrays is no different from handling 2D arrays.
Swipe to start coding
Create a 2D array using lists. This array can have any number of rows and columns, with arbitrary values.
Solución
¡Gracias por tus comentarios!
single
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
Resumir este capítulo
Explicar el código en file
Explicar por qué file no resuelve la tarea
Awesome!
Completion rate improved to 3.7
Creating Higher Dimensional Arrays
Desliza para mostrar el menú
2D Arrays
Let's now create a higher dimensional array, namely a 2D array:
1234import numpy as np # Creating a 2D array array_2d = np.array([[1, 2, 3], [4, 5, 6]]) print(f'2-dimensional array: \n{array_2d}')
Basically, creating a higher-dimensional NumPy array involves passing a higher-dimensional list as the argument of the array()
function.
Note
Any NumPy array object is called an
ndarray
.
Here is a visualization of our 2D array:
We can think of it as a 2x3
matrix.
3D Array
Creating 3D arrays is nearly identical to creating 2D arrays. The only difference is that we now need to pass a 3D list as an argument:
12345678import numpy as np # Creating a 3D array array_3d = np.array([ [[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[10, 11, 12], [13, 14, 15], [16, 17, 18]], [[19, 20, 21], [22, 23, 24], [25, 26, 27]] ]) print(f'3-dimensional array: \n{array_3d}')
However, visualizing a 3D array is a bit more complex, but it can still be done:
The array is 3x3x3
, which is why we have a cube with each side equal to 3.
In practice, the approach to handling 3D and higher-dimensional arrays is no different from handling 2D arrays.
Swipe to start coding
Create a 2D array using lists. This array can have any number of rows and columns, with arbitrary values.
Solución
¡Gracias por tus comentarios!
Awesome!
Completion rate improved to 3.7single