Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre What is K-Means Clustering? | K-Means
Analyse de Cluster
course content

Contenu du cours

Analyse de Cluster

Analyse de Cluster

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
What is K-Means Clustering?

Among clustering algorithms, K-means is a widely popular and effective method. It partitions data into K distinct clusters, where K is a pre-defined number.

The goal of K-means is to minimize distances within clusters and maximize distances between clusters. This creates internally similar and externally distinct groups. K-means has numerous applications, such as:

  • Customer segmentation: grouping customers for targeted marketing;

  • Document clustering: organizing documents by topic;

  • Image segmentation: dividing images for object recognition;

  • Anomaly detection: identifying unusual data points.

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 1

Demandez à l'IA

expand
ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

course content

Contenu du cours

Analyse de Cluster

Analyse de Cluster

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
What is K-Means Clustering?

Among clustering algorithms, K-means is a widely popular and effective method. It partitions data into K distinct clusters, where K is a pre-defined number.

The goal of K-means is to minimize distances within clusters and maximize distances between clusters. This creates internally similar and externally distinct groups. K-means has numerous applications, such as:

  • Customer segmentation: grouping customers for targeted marketing;

  • Document clustering: organizing documents by topic;

  • Image segmentation: dividing images for object recognition;

  • Anomaly detection: identifying unusual data points.

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 1
Nous sommes désolés de vous informer que quelque chose s'est mal passé. Qu'est-il arrivé ?
some-alt