Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Implementing on Real Dataset | DBSCAN
Analyse de Cluster
course content

Contenu du cours

Analyse de Cluster

Analyse de Cluster

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
Implementing on Real Dataset

You'll use the mall customers dataset, which contains the following columns:

You should also follow these steps before clustering:

  1. Load the data: you'll use pandas to load the CSV file;
  2. Select relevant features: you'll focus on 'Annual Income (k$)' and 'Spending Score (1-100)' columns;
  3. Data scaling (important for DBSCAN): since DBSCAN uses distance calculations, it's crucial to scale features to have similar ranges. You can use StandardScaler for this purpose.

Interpretation

The code creates 5 clusters in this case. It's important to analyze the resulting clusters to gain insights into customer segmentation. For example, you might find clusters representing:

  • High-income, high-spending customers;

  • High-income, low-spending customers;

  • Low-income, high-spending customers;

  • Low-income, low-spending customers;

  • Middle-income, middle-spending customers.

Concluding Remarks

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 5. Chapitre 5
Nous sommes désolés de vous informer que quelque chose s'est mal passé. Qu'est-il arrivé ?
some-alt