Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Implementing on Real Dataset | DBSCAN
Analyse de Cluster
course content

Contenu du cours

Analyse de Cluster

Analyse de Cluster

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
Implementing on Real Dataset

You'll use the mall customers dataset, which contains the following columns:

You should also follow these steps before clustering:

  1. Load the data: you'll use pandas to load the CSV file;

  2. Select relevant features: you'll focus on 'Annual Income (k$)' and 'Spending Score (1-100)' columns;

  3. Data scaling (important for DBSCAN): since DBSCAN uses distance calculations, it's crucial to scale features to have similar ranges. You can use StandardScaler for this purpose.

Interpretation

The code creates 5 clusters in this case. It's important to analyze the resulting clusters to gain insights into customer segmentation. For example, you might find clusters representing:

  • High-income, high-spending customers;

  • High-income, low-spending customers;

  • Low-income, high-spending customers;

  • Low-income, low-spending customers;

  • Middle-income, middle-spending customers.

Concluding Remarks

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 5. Chapitre 5

Demandez à l'IA

expand
ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

course content

Contenu du cours

Analyse de Cluster

Analyse de Cluster

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
Implementing on Real Dataset

You'll use the mall customers dataset, which contains the following columns:

You should also follow these steps before clustering:

  1. Load the data: you'll use pandas to load the CSV file;

  2. Select relevant features: you'll focus on 'Annual Income (k$)' and 'Spending Score (1-100)' columns;

  3. Data scaling (important for DBSCAN): since DBSCAN uses distance calculations, it's crucial to scale features to have similar ranges. You can use StandardScaler for this purpose.

Interpretation

The code creates 5 clusters in this case. It's important to analyze the resulting clusters to gain insights into customer segmentation. For example, you might find clusters representing:

  • High-income, high-spending customers;

  • High-income, low-spending customers;

  • Low-income, high-spending customers;

  • Low-income, low-spending customers;

  • Middle-income, middle-spending customers.

Concluding Remarks

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 5. Chapitre 5
Nous sommes désolés de vous informer que quelque chose s'est mal passé. Qu'est-il arrivé ?
some-alt