Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Categorical Features Encoding | Core Concepts
Analyse de Cluster
course content

Contenu du cours

Analyse de Cluster

Analyse de Cluster

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
Categorical Features Encoding

Clustering algorithms like K-means need numerical data. Categorical features must be converted to numerical form using encoding. You will learn about ordinal and one-hot encoding.

Ordinal Encoding

Ordinal encoding converts ordered categories to numerical values, preserving their rank. For example, ordinal encoding of the 'education_level' column will transform its values from "High School", "Bachelor's", "Master's", 'PhD' to 0, 1, 2, 3.

This assumes a meaningful numerical difference between encoded values, which may not always be accurate.

from sklearn.preprocessing import OrdinalEncoder

education_levels = [['High School',
                     "Bachelor's",
                     "Master's",
                     "PhD"]]
encoder = OrdinalEncoder(categories=education_levels)

df[['education_encoded']] = encoder.fit_transform(df[['education_level']]) 

One-Hot Encoding

One-hot encoding converts nominal (unordered) categories into binary columns, where each category becomes a new column. For a feature with n categories, this typically creates n columns — one column is 1 for the corresponding category, and the others are 0. However, only n-1 columns are actually needed to represent the information without redundancy.

For example, a 'color' column with values 'red', 'blue', and 'green' can be encoded with just two columns: 'color_red' and 'color_blue'. If a row has 0 in both, it implies the color is 'green'. By dropping one column, we avoid redundancy.

The removal of the redundant column is specified via drop='first':

from sklearn.preprocessing import OneHotEncoder 

encoder = OneHotEncoder(drop='first', sparse=False) 

encoded = encoder.fit_transform(df[['color']]) 
question mark

Which encoding method is best suited for a categorical feature like 'country' with values such as "USA", "Canada", and "Germany", where there is no natural order?

Select the correct answer

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 2

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

course content

Contenu du cours

Analyse de Cluster

Analyse de Cluster

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
Categorical Features Encoding

Clustering algorithms like K-means need numerical data. Categorical features must be converted to numerical form using encoding. You will learn about ordinal and one-hot encoding.

Ordinal Encoding

Ordinal encoding converts ordered categories to numerical values, preserving their rank. For example, ordinal encoding of the 'education_level' column will transform its values from "High School", "Bachelor's", "Master's", 'PhD' to 0, 1, 2, 3.

This assumes a meaningful numerical difference between encoded values, which may not always be accurate.

from sklearn.preprocessing import OrdinalEncoder

education_levels = [['High School',
                     "Bachelor's",
                     "Master's",
                     "PhD"]]
encoder = OrdinalEncoder(categories=education_levels)

df[['education_encoded']] = encoder.fit_transform(df[['education_level']]) 

One-Hot Encoding

One-hot encoding converts nominal (unordered) categories into binary columns, where each category becomes a new column. For a feature with n categories, this typically creates n columns — one column is 1 for the corresponding category, and the others are 0. However, only n-1 columns are actually needed to represent the information without redundancy.

For example, a 'color' column with values 'red', 'blue', and 'green' can be encoded with just two columns: 'color_red' and 'color_blue'. If a row has 0 in both, it implies the color is 'green'. By dropping one column, we avoid redundancy.

The removal of the redundant column is specified via drop='first':

from sklearn.preprocessing import OneHotEncoder 

encoder = OneHotEncoder(drop='first', sparse=False) 

encoded = encoder.fit_transform(df[['color']]) 
question mark

Which encoding method is best suited for a categorical feature like 'country' with values such as "USA", "Canada", and "Germany", where there is no natural order?

Select the correct answer

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 2
some-alt