Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Rule-based Approach | Statistical Methods in Anomaly Detection
Data Anomaly Detection
course content

Зміст курсу

Data Anomaly Detection

Data Anomaly Detection

1. What is Anomaly Detection?
2. Statistical Methods in Anomaly Detection
3. Machine Learning Techniques

bookChallenge: Rule-based Approach

Завдання

Your task is to create a function that identifies outliers based on the Euclidean distance between each data point and the mean value of the dataset:

  1. Calculate the Euclidean distance for each data point in the dataset.
  2. If the calculated distance of a data point falls outside a predefined range, classify it as an outlier.
  3. Create a list to store the identified outliers and print the list.

Once you've completed this task, click the button below the code to check your solution.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 2
toggle bottom row

bookChallenge: Rule-based Approach

Завдання

Your task is to create a function that identifies outliers based on the Euclidean distance between each data point and the mean value of the dataset:

  1. Calculate the Euclidean distance for each data point in the dataset.
  2. If the calculated distance of a data point falls outside a predefined range, classify it as an outlier.
  3. Create a list to store the identified outliers and print the list.

Once you've completed this task, click the button below the code to check your solution.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 2
toggle bottom row

bookChallenge: Rule-based Approach

Завдання

Your task is to create a function that identifies outliers based on the Euclidean distance between each data point and the mean value of the dataset:

  1. Calculate the Euclidean distance for each data point in the dataset.
  2. If the calculated distance of a data point falls outside a predefined range, classify it as an outlier.
  3. Create a list to store the identified outliers and print the list.

Once you've completed this task, click the button below the code to check your solution.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Завдання

Your task is to create a function that identifies outliers based on the Euclidean distance between each data point and the mean value of the dataset:

  1. Calculate the Euclidean distance for each data point in the dataset.
  2. If the calculated distance of a data point falls outside a predefined range, classify it as an outlier.
  3. Create a list to store the identified outliers and print the list.

Once you've completed this task, click the button below the code to check your solution.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 2. Розділ 2
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
some-alt