Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Regularisation | Machine Learning Techniques
Data Anomaly Detection
course content

Зміст курсу

Data Anomaly Detection

Data Anomaly Detection

1. What is Anomaly Detection?
2. Statistical Methods in Anomaly Detection
3. Machine Learning Techniques

bookRegularisation

Regularization is commonly employed when dealing with anomalies to mitigate their undue impact on predictive models. While regularization may not directly identify outliers, its primary role is to reduce the influence of outliers on the model's results.

Instead of explicitly detecting outliers, it focuses on making the model more robust and less sensitive to extreme data points.

Regularisation types

How does L2 regularization (Ridge) impact a model's sensitivity to anomalies or outliers in the data?

How does L2 regularization (Ridge) impact a model's sensitivity to anomalies or outliers in the data?

Виберіть правильну відповідь

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 3
some-alt