Adding new Columns
We can easily add new columns to an existing DataFrame using the indexing syntax:
dataframe[column_name] = values
It is important that if values
is a list, it needs to have the same number of elements as there are rows in the DataFrame, otherwise you'll get an error. Alternatively, we can assign a single value to the entire new column as well.
Example 1: New Column from a Single Value
1234567891011import pandas as pd df = pd.DataFrame({ 'Product': ['Laptop', 'Tablet', 'Phone'], 'Old Price': [1000, 600, 400] }) # Add a new column with a fixed price for all rows df['New Price'] = 700 print(df)
Example 2: New Column using a List of Values
1234567891011import pandas as pd df = pd.DataFrame({ 'Member': ['Sophie', 'Liam', 'Emma'], 'Role': ['Designer', 'Developer', 'Tester'] }) # Add a new column for Project Name df['Project'] = ['Marketing Website Redesign', 'Client Portal Backend Development', 'Payment Flow QA Testing'] print(df)
Example 3: New Column derived from Another Column
1234567891011import pandas as pd df = pd.DataFrame({ 'Product': ['Laptop', 'Tablet', 'Phone'], 'Price': [1000, 600, 400] }) # Derive a new column 'Discounted Price' (10% off) df['Discounted Price'] = df['Price'] * 0.9 print(df)
1. What happens if you try to add a new column to a DataFrame with a list that has fewer elements than the number of rows?
2. Which of the following lines correctly adds a column Discount
which is 20% of the Price
?
3. What would be the output of the following code?
Danke für Ihr Feedback!
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Fragen Sie mich Fragen zu diesem Thema
Zusammenfassen Sie dieses Kapitel
Zeige reale Beispiele
Awesome!
Completion rate improved to 2.7
Adding new Columns
Swipe um das Menü anzuzeigen
We can easily add new columns to an existing DataFrame using the indexing syntax:
dataframe[column_name] = values
It is important that if values
is a list, it needs to have the same number of elements as there are rows in the DataFrame, otherwise you'll get an error. Alternatively, we can assign a single value to the entire new column as well.
Example 1: New Column from a Single Value
1234567891011import pandas as pd df = pd.DataFrame({ 'Product': ['Laptop', 'Tablet', 'Phone'], 'Old Price': [1000, 600, 400] }) # Add a new column with a fixed price for all rows df['New Price'] = 700 print(df)
Example 2: New Column using a List of Values
1234567891011import pandas as pd df = pd.DataFrame({ 'Member': ['Sophie', 'Liam', 'Emma'], 'Role': ['Designer', 'Developer', 'Tester'] }) # Add a new column for Project Name df['Project'] = ['Marketing Website Redesign', 'Client Portal Backend Development', 'Payment Flow QA Testing'] print(df)
Example 3: New Column derived from Another Column
1234567891011import pandas as pd df = pd.DataFrame({ 'Product': ['Laptop', 'Tablet', 'Phone'], 'Price': [1000, 600, 400] }) # Derive a new column 'Discounted Price' (10% off) df['Discounted Price'] = df['Price'] * 0.9 print(df)
1. What happens if you try to add a new column to a DataFrame with a list that has fewer elements than the number of rows?
2. Which of the following lines correctly adds a column Discount
which is 20% of the Price
?
3. What would be the output of the following code?
Danke für Ihr Feedback!