Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen The `iloc` Property | Fetching Data from DataFrames
Pandas: First Steps
course content

Kursinhalt

Pandas: First Steps

Pandas: First Steps

1. Getting Started
2. Basics of Dataframes
3. Fetching Data from DataFrames

book
The `iloc` Property

The iloc property in Pandas allows us to access specific parts of a DataFrame using numerical positions.

You can use iloc to access:

  • A single element;
  • A single row;
  • A single column;
  • A range of rows;
  • A range of columns;
  • A range of rows and columns.

General Syntax

DataFrame.iloc[row_position, column_position]

You can also slice:

DataFrame.iloc[start_row:end_row, start_col:end_col]

Example

12345678910111213141516171819202122232425
import pandas as pd df = pd.DataFrame({ 'Name': ['Alice', 'Bob', 'Charlie', 'Daisy'], 'Age': [25, 30, 35, 28], 'City': ['New York', 'Paris', 'London', 'Berlin'] }) # Single element print('>> Single Element:\n', df.iloc[1, 2]) # Single row print('\n>> Single Row:\n', df.iloc[2]) # Single column print('\n>> Single Column:\n', df.iloc[:, 1]) # Range of rows print('\n>> Range of Rows:\n', df.iloc[1:3]) # Range of columns print('\n>> Range of Columns:\n', df.iloc[:, 0:2]) # Range of rows and columns print('\n>> Range of Rows & Columns:\n', df.iloc[1:3, 0:2])
copy
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 10

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

course content

Kursinhalt

Pandas: First Steps

Pandas: First Steps

1. Getting Started
2. Basics of Dataframes
3. Fetching Data from DataFrames

book
The `iloc` Property

The iloc property in Pandas allows us to access specific parts of a DataFrame using numerical positions.

You can use iloc to access:

  • A single element;
  • A single row;
  • A single column;
  • A range of rows;
  • A range of columns;
  • A range of rows and columns.

General Syntax

DataFrame.iloc[row_position, column_position]

You can also slice:

DataFrame.iloc[start_row:end_row, start_col:end_col]

Example

12345678910111213141516171819202122232425
import pandas as pd df = pd.DataFrame({ 'Name': ['Alice', 'Bob', 'Charlie', 'Daisy'], 'Age': [25, 30, 35, 28], 'City': ['New York', 'Paris', 'London', 'Berlin'] }) # Single element print('>> Single Element:\n', df.iloc[1, 2]) # Single row print('\n>> Single Row:\n', df.iloc[2]) # Single column print('\n>> Single Column:\n', df.iloc[:, 1]) # Range of rows print('\n>> Range of Rows:\n', df.iloc[1:3]) # Range of columns print('\n>> Range of Columns:\n', df.iloc[:, 0:2]) # Range of rows and columns print('\n>> Range of Rows & Columns:\n', df.iloc[1:3, 0:2])
copy
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 10
some-alt