Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Practical Examples of Generators | Iterators and Generators
Python Advanced Concepts
course content

Зміст курсу

Python Advanced Concepts

Python Advanced Concepts

1. Modules and Imports
2. Error Handling
3. File Handling
4. Pytest Framework
5. Unittest Framework
6. Iterators and Generators

book
Practical Examples of Generators

Generators can be used as lightweight context managers to manage resources efficiently, such as database connections, file operations, or locking mechanisms. With the contextlib module, generators can handle resource allocation and cleanup seamlessly.

1234567891011121314
from contextlib import contextmanager @contextmanager def database_connection(): print("Opening database connection") connection = "Database Connection" # Simulated connection try: yield connection finally: print("Closing database connection") # Using the generator as a context manager with database_connection() as conn: print(f"Using {conn}")
copy

Processing Large Data Efficiently

Generators are ideal for building data pipelines that process large datasets lazily. Each stage of the pipeline can be implemented as a generator, enabling efficient, memory-friendly processing.

12345678910111213141516171819202122232425262728293031323334353637383940
import re # Stage 1: Read lines lazily def read_lines(text): for line in text.split("\n"): yield line # Stage 2: Filter non-empty lines def filter_lines(lines): for line in lines: if line.strip(): yield line # Stage 3: Extract words lazily def extract_words(lines): for line in lines: for word in re.findall(r'\w+', line): yield word # Stage 4: Transform words to lowercase def lowercase_words(words): for word in words: yield word.lower() # Input text text = """Generators are powerful tools They allow efficient data processing This pipeline demonstrates their usage""" # Build the pipeline lines = read_lines(text) filtered = filter_lines(lines) words = extract_words(filtered) lowercased = lowercase_words(words) # Process the data print("Processed words:") for word in lowercased: print(word)
copy

1. What happens when a generator function runs out of values to yield?

2. What will the following code output?

3. What does the following code do?

What happens when a generator function runs out of values to `yield`?

What happens when a generator function runs out of values to yield?

Виберіть правильну відповідь

What will the following code output?

What will the following code output?

Виберіть правильну відповідь

What does the following code do?

What does the following code do?

Виберіть правильну відповідь

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 6. Розділ 5
We're sorry to hear that something went wrong. What happened?
some-alt