Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Grouping in Pandas | Unveiling the Power of Data Manipulation with Pandas
Unveiling the Power of Data Manipulation with Pandas
course content

Зміст курсу

Unveiling the Power of Data Manipulation with Pandas

test

Swipe to show menu

book
Grouping in Pandas

Grouping in pandas involves dividing a DataFrame into groups based on the values in one or more columns. You can then apply a function to each group to compute a summary statistic, such as the mean, sum, or count.

To group a DataFrame in pandas, use the .groupby() method. This method accepts a column name or a list of column names and returns a groupby object.

Here is an example:

This example demonstrates how to calculate the mean for each group formed based on the values in 'column_name'.

Завдання
test

Swipe to show code editor

  1. Group the data DataFrame by 'DEPARTMENT_NAME' and compute the mean, minimum, and maximum of the 'MANAGER_ID' column for each group.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 5
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt