Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Motivation Analysis | Conducting Exploratory Data Analysis of Nobel Prizes
Conducting Exploratory Data Analysis of Nobel Prizes
course content

Kursinnehåll

Conducting Exploratory Data Analysis of Nobel Prizes

book
Motivation Analysis

In this section, our focus will be on examining the text to identify the most prevalent words in our dataset. Initially, we will eliminate all stopwords from the "motivation" column and modify our data accordingly.

Take, for instance, the sentence: "I like reading, so I read." It will be altered to: "Like Reading Read." Following this transformation, we will visualize these words in a word cloud, where the size of each word reflects its frequency in our dataset.

Uppgift

Swipe to start coding

  1. Apply a lambda function to remove stopwords from the 'motivation' column and store the processed text in the 'Filtered motivation' column.

  2. Concatenate all entries in the "Filtered motivation" column to form a single text string.

  3. Split the concatenated text into individual words and create a pandas DataFrame from the list of words.

  4. Calculate word frequency by counting occurrences of each word.

  5. Plot the 20 most common words using seaborn's barplot.

Lösning

Mark tasks as Completed
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 5
AVAILABLE TO ULTIMATE ONLY
Vi beklagar att något gick fel. Vad hände?
some-alt