Adding new Columns
We can easily add new columns to an existing DataFrame using the indexing syntax:
dataframe[column_name] = values
It is important that if values
is a list, it needs to have the same number of elements as there are rows in the DataFrame, otherwise you'll get an error. Alternatively, we can assign a single value to the entire new column as well.
Example 1: New Column from a Single Value
1234567891011import pandas as pd df = pd.DataFrame({ 'Product': ['Laptop', 'Tablet', 'Phone'], 'Old Price': [1000, 600, 400] }) # Add a new column with a fixed price for all rows df['New Price'] = 700 print(df)
Example 2: New Column using a List of Values
1234567891011import pandas as pd df = pd.DataFrame({ 'Member': ['Sophie', 'Liam', 'Emma'], 'Role': ['Designer', 'Developer', 'Tester'] }) # Add a new column for Project Name df['Project'] = ['Marketing Website Redesign', 'Client Portal Backend Development', 'Payment Flow QA Testing'] print(df)
Example 3: New Column derived from Another Column
1234567891011import pandas as pd df = pd.DataFrame({ 'Product': ['Laptop', 'Tablet', 'Phone'], 'Price': [1000, 600, 400] }) # Derive a new column 'Discounted Price' (10% off) df['Discounted Price'] = df['Price'] * 0.9 print(df)
1. What happens if you try to add a new column to a DataFrame with a list that has fewer elements than the number of rows?
2. Which of the following lines correctly adds a column Discount
which is 20% of the Price
?
3. What would be the output of the following code?
Obrigado pelo seu feedback!
Pergunte à IA
Pergunte à IA
Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo
Pergunte-me perguntas sobre este assunto
Resumir este capítulo
Mostrar exemplos do mundo real
Awesome!
Completion rate improved to 2.7
Adding new Columns
Deslize para mostrar o menu
We can easily add new columns to an existing DataFrame using the indexing syntax:
dataframe[column_name] = values
It is important that if values
is a list, it needs to have the same number of elements as there are rows in the DataFrame, otherwise you'll get an error. Alternatively, we can assign a single value to the entire new column as well.
Example 1: New Column from a Single Value
1234567891011import pandas as pd df = pd.DataFrame({ 'Product': ['Laptop', 'Tablet', 'Phone'], 'Old Price': [1000, 600, 400] }) # Add a new column with a fixed price for all rows df['New Price'] = 700 print(df)
Example 2: New Column using a List of Values
1234567891011import pandas as pd df = pd.DataFrame({ 'Member': ['Sophie', 'Liam', 'Emma'], 'Role': ['Designer', 'Developer', 'Tester'] }) # Add a new column for Project Name df['Project'] = ['Marketing Website Redesign', 'Client Portal Backend Development', 'Payment Flow QA Testing'] print(df)
Example 3: New Column derived from Another Column
1234567891011import pandas as pd df = pd.DataFrame({ 'Product': ['Laptop', 'Tablet', 'Phone'], 'Price': [1000, 600, 400] }) # Derive a new column 'Discounted Price' (10% off) df['Discounted Price'] = df['Price'] * 0.9 print(df)
1. What happens if you try to add a new column to a DataFrame with a list that has fewer elements than the number of rows?
2. Which of the following lines correctly adds a column Discount
which is 20% of the Price
?
3. What would be the output of the following code?
Obrigado pelo seu feedback!