Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Aggregating in 2-D Arrays | Introduction to NumPy
Introduction to Data Analysis in Python
course content

Conteúdo do Curso

Introduction to Data Analysis in Python

Introduction to Data Analysis in Python

1. Basics
2. Data Types
3. Control Flow
4. Functions and Modules
5. Introduction to NumPy

book
Aggregating in 2-D Arrays

All the aggregate functions learned in this section can be used along either columns, or rows. To do it, you need to specify the axis parameter within aggregate function.

For example, we can compute the sum of rows and columns elements separately.

1234567
# Import the library import numpy as np # Creating array arr = np.array([[5.2, 3.0, 4.5], [9.1, 0.1, 0.3]]) # Sum of rows and columns elements print(arr.sum(axis = 0)) # columns print(arr.sum(axis = 1)) # rows
copy

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 6

Pergunte à IA

expand
ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

course content

Conteúdo do Curso

Introduction to Data Analysis in Python

Introduction to Data Analysis in Python

1. Basics
2. Data Types
3. Control Flow
4. Functions and Modules
5. Introduction to NumPy

book
Aggregating in 2-D Arrays

All the aggregate functions learned in this section can be used along either columns, or rows. To do it, you need to specify the axis parameter within aggregate function.

For example, we can compute the sum of rows and columns elements separately.

1234567
# Import the library import numpy as np # Creating array arr = np.array([[5.2, 3.0, 4.5], [9.1, 0.1, 0.3]]) # Sum of rows and columns elements print(arr.sum(axis = 0)) # columns print(arr.sum(axis = 1)) # rows
copy

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 6
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt