Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Kurssi Identifying the Most Frequent Words in Text - Online-opiskelu sertifikaatilla
python

Identifying the Most Frequent Words in Text

Edoardo Cantagallo

Python

11 Chapters

0 Studying now

In this project, we will be utilizing the capabilities of the Natural Language Toolkit (NLTK), a versatile and comprehensive library in Python designed for working with human language data. Our focus will encompass several core areas of natural language processing: tokenization, stemming, tagging and parsing. These NLTK features will form the backbone of our text processing and analysis tasks, making it an essential tool in our project for handling and extracting meaningful insights from language data.

more

Teknologia

Python

Kieli

En

Arvosana

Luvut

11

Introduction

Import NLTK

Tokenization

Stopwords

List Comprehension

Stemming

Tagging

Lemmatizer

Regexp Tokenizer

Data Visualization

Word Cloud

0%

Introduction

Import NLTK

Tokenization

Stopwords

List Comprehension

Stemming

Tagging

Lemmatizer

Regexp Tokenizer

Data Visualization

Word Cloud

Kurssin kuvaus

In this project, we will be utilizing the capabilities of the Natural Language Toolkit (NLTK), a versatile and comprehensive library in Python designed for working with human language data. Our focus will encompass several core areas of natural language processing: tokenization, stemming, tagging and parsing. These NLTK features will form the backbone of our text processing and analysis tasks, making it an essential tool in our project for handling and extracting meaningful insights from language data.

Käytännön projektit

Seuraa meitä

trustpilot logo

Osoite

codefinity
Pahoittelemme, että jotain meni pieleen. Mitä tapahtui?
some-alt