Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Importing the Dataset | Indian Food Project
Indian Food Project
course content

Contenido del Curso

Indian Food Project

Indian Food Project

bookImporting the Dataset

Python in general supports many type of raw files and sources through libraries like pandas.

Pandas has many helpful read_filetype() functions to handle many file types, for example:

read_csv() read_excel() read_json() read_html() read_sql() read_pickle()

Note

See docs for detailed info: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

In our example, the training data is in csv format and is stored in "/kaggle/input/indian-food-101/indian_food.csv". We will use read_csv() function, it accepts a filepath parameter.

The output is a DataFrame called IndianFoods.

Tarea

  1. Creating a DataFrame from file.

DataFrame

  • Pandas specific Data structure, to store data in tabular format;
  • Looks similar to SQL table;
  • Has a lot of associated functions, similar to table-level commands in SQL (SELECT, SUM etc);
  • Stored in memory (RAM). In comparision, SQL tables are stored on hard-disk and pulled into memory while running commands.

Mark tasks as Completed
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Python in general supports many type of raw files and sources through libraries like pandas.

Pandas has many helpful read_filetype() functions to handle many file types, for example:

read_csv() read_excel() read_json() read_html() read_sql() read_pickle()

Note

See docs for detailed info: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

In our example, the training data is in csv format and is stored in "/kaggle/input/indian-food-101/indian_food.csv". We will use read_csv() function, it accepts a filepath parameter.

The output is a DataFrame called IndianFoods.

Tarea

  1. Creating a DataFrame from file.

DataFrame

  • Pandas specific Data structure, to store data in tabular format;
  • Looks similar to SQL table;
  • Has a lot of associated functions, similar to table-level commands in SQL (SELECT, SUM etc);
  • Stored in memory (RAM). In comparision, SQL tables are stored on hard-disk and pulled into memory while running commands.

Mark tasks as Completed
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 1. Capítulo 1
AVAILABLE TO ULTIMATE ONLY
some-alt