Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Ensemble Learning | Description of Track Courses
Foundations of Machine Learning Track Overview
course content

Kursusindhold

Foundations of Machine Learning Track Overview

book
Ensemble Learning

Ensemble learning is a machine learning technique that combines predictions from multiple individual models to create a stronger, more accurate, and robust model. The basic idea behind ensemble methods is to leverage the wisdom of the crowd; by aggregating predictions from diverse models, the ensemble can often outperform any individual model.

Why Do We Need Ensemble Learning

  1. Increased Accuracy: Combining predictions from multiple models often leads to higher accuracy than any single model.

  2. Robustness: Ensembles are more resistant to overfitting because they average out biases and errors present in individual models.

  3. Handling Complexity: Ensembles can capture complex relationships in data that might be difficult for individual models to grasp.

  4. Versatility: Ensemble methods can be applied to various types of machine learning algorithms, making them versatile and widely applicable.

Example

Let's use the famous Breast Cancer dataset from scikit-learn for this ensemble classification example. Here's how you can perform ensemble learning using Random Forest on the Breast Cancer dataset and visualize the decision boundaries:

12345678910111213141516171819202122232425262728293031323334353637383940
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_breast_cancer from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Load the Breast Cancer dataset data = load_breast_cancer() X, y = data.data[:, :2], data.target # We use the first two features for visualization # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Create Random Forest Classifier rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42) # Train the classifier rf_classifier.fit(X_train, y_train) # Make predictions predictions = rf_classifier.predict(X_test) # Calculate accuracy accuracy = accuracy_score(y_test, predictions) print("Accuracy:", accuracy) # Visualization x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1)) Z = rf_classifier.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o', s=70, linewidth=1, cmap=plt.cm.Paired) plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.title('Random Forest Classifier Decision Boundaries (Breast Cancer Dataset)') plt.show()
copy

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 6

Spørg AI

expand
ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

course content

Kursusindhold

Foundations of Machine Learning Track Overview

book
Ensemble Learning

Ensemble learning is a machine learning technique that combines predictions from multiple individual models to create a stronger, more accurate, and robust model. The basic idea behind ensemble methods is to leverage the wisdom of the crowd; by aggregating predictions from diverse models, the ensemble can often outperform any individual model.

Why Do We Need Ensemble Learning

  1. Increased Accuracy: Combining predictions from multiple models often leads to higher accuracy than any single model.

  2. Robustness: Ensembles are more resistant to overfitting because they average out biases and errors present in individual models.

  3. Handling Complexity: Ensembles can capture complex relationships in data that might be difficult for individual models to grasp.

  4. Versatility: Ensemble methods can be applied to various types of machine learning algorithms, making them versatile and widely applicable.

Example

Let's use the famous Breast Cancer dataset from scikit-learn for this ensemble classification example. Here's how you can perform ensemble learning using Random Forest on the Breast Cancer dataset and visualize the decision boundaries:

12345678910111213141516171819202122232425262728293031323334353637383940
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_breast_cancer from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Load the Breast Cancer dataset data = load_breast_cancer() X, y = data.data[:, :2], data.target # We use the first two features for visualization # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Create Random Forest Classifier rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42) # Train the classifier rf_classifier.fit(X_train, y_train) # Make predictions predictions = rf_classifier.predict(X_test) # Calculate accuracy accuracy = accuracy_score(y_test, predictions) print("Accuracy:", accuracy) # Visualization x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1)) Z = rf_classifier.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o', s=70, linewidth=1, cmap=plt.cm.Paired) plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.title('Random Forest Classifier Decision Boundaries (Breast Cancer Dataset)') plt.show()
copy

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 6
Vi beklager, at noget gik galt. Hvad skete der?
some-alt