Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Importing the Dataset | Indian Food Project
Indian Food Project
course content

Kursusindhold

Indian Food Project

Indian Food Project

bookImporting the Dataset

Python in general supports many type of raw files and sources through libraries like pandas.

Pandas has many helpful read_filetype() functions to handle many file types, for example:

read_csv() read_excel() read_json() read_html() read_sql() read_pickle()

Note

See docs for detailed info: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

In our example, the training data is in csv format and is stored in "/kaggle/input/indian-food-101/indian_food.csv". We will use read_csv() function, it accepts a filepath parameter.

The output is a DataFrame called IndianFoods.

Opgave

Swipe to start coding

  1. Creating a DataFrame from file.

Løsning

DataFrame

  • Pandas specific Data structure, to store data in tabular format;
  • Looks similar to SQL table;
  • Has a lot of associated functions, similar to table-level commands in SQL (SELECT, SUM etc);
  • Stored in memory (RAM). In comparision, SQL tables are stored on hard-disk and pulled into memory while running commands.

Mark tasks as Completed
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 1
AVAILABLE TO ULTIMATE ONLY
some-alt