Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Ensemble Learning | Description of Track Courses
Foundations of Machine Learning Track Overview
course content

Course Content

Foundations of Machine Learning Track Overview

book
Ensemble Learning

12345678910111213141516171819202122232425262728293031323334353637383940
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_breast_cancer from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Load the Breast Cancer dataset data = load_breast_cancer() X, y = data.data[:, :2], data.target # We use the first two features for visualization # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Create Random Forest Classifier rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42) # Train the classifier rf_classifier.fit(X_train, y_train) # Make predictions predictions = rf_classifier.predict(X_test) # Calculate accuracy accuracy = accuracy_score(y_test, predictions) print("Accuracy:", accuracy) # Visualization x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1)) Z = rf_classifier.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o', s=70, linewidth=1, cmap=plt.cm.Paired) plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.title('Random Forest Classifier Decision Boundaries (Breast Cancer Dataset)') plt.show()
copy

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 1. ChapterΒ 6

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

course content

Course Content

Foundations of Machine Learning Track Overview

book
Ensemble Learning

12345678910111213141516171819202122232425262728293031323334353637383940
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_breast_cancer from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Load the Breast Cancer dataset data = load_breast_cancer() X, y = data.data[:, :2], data.target # We use the first two features for visualization # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Create Random Forest Classifier rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42) # Train the classifier rf_classifier.fit(X_train, y_train) # Make predictions predictions = rf_classifier.predict(X_test) # Calculate accuracy accuracy = accuracy_score(y_test, predictions) print("Accuracy:", accuracy) # Visualization x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1)) Z = rf_classifier.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o', s=70, linewidth=1, cmap=plt.cm.Paired) plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.title('Random Forest Classifier Decision Boundaries (Breast Cancer Dataset)') plt.show()
copy

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 1. ChapterΒ 6
some-alt