Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Aggregating in 2-D Arrays | Introduction to NumPy
Introduction to Data Analysis in Python

bookAggregating in 2-D Arrays

All the aggregate functions learned in this section can be used along either columns, or rows. To do it, you need to specify the axis parameter within aggregate function.

For example, we can compute the sum of rows and columns elements separately.

1234567
# Import the library import numpy as np # Creating array arr = np.array([[5.2, 3.0, 4.5], [9.1, 0.1, 0.3]]) # Sum of rows and columns elements print(arr.sum(axis = 0)) # columns print(arr.sum(axis = 1)) # rows
copy

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 5. ChapterΒ 6

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

Suggested prompts:

Ask me questions about this topic

Summarize this chapter

Show real-world examples

Awesome!

Completion rate improved to 2.7

bookAggregating in 2-D Arrays

Swipe to show menu

All the aggregate functions learned in this section can be used along either columns, or rows. To do it, you need to specify the axis parameter within aggregate function.

For example, we can compute the sum of rows and columns elements separately.

1234567
# Import the library import numpy as np # Creating array arr = np.array([[5.2, 3.0, 4.5], [9.1, 0.1, 0.3]]) # Sum of rows and columns elements print(arr.sum(axis = 0)) # columns print(arr.sum(axis = 1)) # rows
copy

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 5. ChapterΒ 6
some-alt