Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Importing the Dataset | Indian Food Project
Indian Food Project
course content

Course Content

Indian Food Project

Indian Food Project

bookImporting the Dataset

Python in general supports many type of raw files and sources through libraries like pandas.

Pandas has many helpful read_filetype() functions to handle many file types, for example:

read_csv() read_excel() read_json() read_html() read_sql() read_pickle()

Note

See docs for detailed info: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

In our example, the training data is in csv format and is stored in "/kaggle/input/indian-food-101/indian_food.csv". We will use read_csv() function, it accepts a filepath parameter.

The output is a DataFrame called IndianFoods.

Task

  1. Creating a DataFrame from file.

DataFrame

  • Pandas specific Data structure, to store data in tabular format;
  • Looks similar to SQL table;
  • Has a lot of associated functions, similar to table-level commands in SQL (SELECT, SUM etc);
  • Stored in memory (RAM). In comparision, SQL tables are stored on hard-disk and pulled into memory while running commands.

Mark tasks as Completed
Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Python in general supports many type of raw files and sources through libraries like pandas.

Pandas has many helpful read_filetype() functions to handle many file types, for example:

read_csv() read_excel() read_json() read_html() read_sql() read_pickle()

Note

See docs for detailed info: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

In our example, the training data is in csv format and is stored in "/kaggle/input/indian-food-101/indian_food.csv". We will use read_csv() function, it accepts a filepath parameter.

The output is a DataFrame called IndianFoods.

Task

  1. Creating a DataFrame from file.

DataFrame

  • Pandas specific Data structure, to store data in tabular format;
  • Looks similar to SQL table;
  • Has a lot of associated functions, similar to table-level commands in SQL (SELECT, SUM etc);
  • Stored in memory (RAM). In comparision, SQL tables are stored on hard-disk and pulled into memory while running commands.

Mark tasks as Completed
Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Section 1. Chapter 1
AVAILABLE TO ULTIMATE ONLY
some-alt