Challenge: Feature Selection Pipeline
Завдання
Swipe to start coding
You will build a feature selection + regression pipeline to predict disease progression using the Diabetes dataset. Your goal is to combine preprocessing, feature selection, and model training in one efficient workflow.
Follow these steps:
- Load the dataset using
load_diabetes(). - Split it into train/test sets (
test_size=0.3,random_state=42). - Build a pipeline with:
StandardScaler().SelectFromModel(Lasso(alpha=0.01, random_state=42))for automatic feature selection.LinearRegression()as the final model.
- Fit the pipeline and evaluate it using R² score on the test set.
- Print:
- The R² score (rounded to 3 decimals).
- The number of features selected.
Рішення
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 2. Розділ 4
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Awesome!
Completion rate improved to 8.33
Challenge: Feature Selection Pipeline
Свайпніть щоб показати меню
Завдання
Swipe to start coding
You will build a feature selection + regression pipeline to predict disease progression using the Diabetes dataset. Your goal is to combine preprocessing, feature selection, and model training in one efficient workflow.
Follow these steps:
- Load the dataset using
load_diabetes(). - Split it into train/test sets (
test_size=0.3,random_state=42). - Build a pipeline with:
StandardScaler().SelectFromModel(Lasso(alpha=0.01, random_state=42))for automatic feature selection.LinearRegression()as the final model.
- Fit the pipeline and evaluate it using R² score on the test set.
- Print:
- The R² score (rounded to 3 decimals).
- The number of features selected.
Рішення
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 2. Розділ 4
single