Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Object Detection with Custom Model and YOLO | Object Detection
Computer Vision Essentials
course content

Зміст курсу

Computer Vision Essentials

Computer Vision Essentials

1. Introduction to Computer Vision
2. Image Processing with OpenCV
3. Convolutional Neural Networks
4. Object Detection
5. Advanced Topics Overview

book
Challenge: Object Detection with Custom Model and YOLO

In this task, you'll dive into the world of object detection using deep learning. First, you'll build your own object detection model from scratch using Keras. Then, you'll load a pretrained YOLOv8 model and apply it to the same dataset.

Along the way, you'll:

  • Train a simple Keras-based object detector;

  • Load and run predictions with a YOLOv8 model trained on the same data;

  • Evaluate its performance on real validation images;

  • Compare results and understand the gap between custom models and state-of-the-art ones.

In the middle of the notebook, you'll reflect on why building detection models from scratch can be limiting — and briefly mention the importance of **transfer learning88 for practical applications.

question-icon

Complete the challenge and paste all parts of the key

1.  2.  3.  4.  5.  6.  7.  8.
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 8

Запитати АІ

expand
ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

course content

Зміст курсу

Computer Vision Essentials

Computer Vision Essentials

1. Introduction to Computer Vision
2. Image Processing with OpenCV
3. Convolutional Neural Networks
4. Object Detection
5. Advanced Topics Overview

book
Challenge: Object Detection with Custom Model and YOLO

In this task, you'll dive into the world of object detection using deep learning. First, you'll build your own object detection model from scratch using Keras. Then, you'll load a pretrained YOLOv8 model and apply it to the same dataset.

Along the way, you'll:

  • Train a simple Keras-based object detector;

  • Load and run predictions with a YOLOv8 model trained on the same data;

  • Evaluate its performance on real validation images;

  • Compare results and understand the gap between custom models and state-of-the-art ones.

In the middle of the notebook, you'll reflect on why building detection models from scratch can be limiting — and briefly mention the importance of **transfer learning88 for practical applications.

question-icon

Complete the challenge and paste all parts of the key

1.  2.  3.  4.  5.  6.  7.  8.
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 8
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?
some-alt