Corner and Blob Detection
Corner Detection
Corner detection is used to identify sharp changes in intensity where two edges meet. It helps in feature matching, object tracking, and structure recognition.
Popular Methods:
Harris corner detector (
cv2.cornerHarris
): detects corners based on gradient changes;
Shi-Tomasi corner detector (
cv2.goodFeaturesToTrack
): selects the strongest corners in an image;
Blob Detection
Blob detection finds regions of similar intensity in an image, useful for object detection and tracking.
One of the popular methods for blob detection is SimpleBlobDetector
cv2.SimpleBlobDetector
: detects keypoints representing blobs based on size, shape, and intensity.
Завдання
Swipe to start coding
You are given the images of factory (factory
) and sunflowers (sunflowers
):
- Convert
factory
image to grayscale and store ingray_factory
variable; - Convert
sunflowers
image to grayscale and store ingray_sunflowers
variable; - It is necessary for Harris Detector to convert image matrix to
float32
, do it and store ingray_float
; - Apply Harris corner detection and store in
harris_corners
(recommended parametersblockSize=2, ksize=3, k=0.04
); - Use
dilate()
to improve visibility ofharris_corners
; - Apply Shi-Tomasi corner detection to image and store in
shi_tomasi_corners
(recommended parametersgray_factory, maxCorners=100, qualityLevel=0.01, minDistance=10
) - Create
SimpleBlobDetector_Params
object to initialize the parameters and store inparams
; - Create a blob detector with specified parameters and store in
detector
; - Detect blob keypoints and store in
keypoints
.
Рішення
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 2. Розділ 8