Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Group by Period? | Working with Dates and Times in pandas
Dealing with Dates and Times in Python

Свайпніть щоб показати меню

book
Challenge: Group by Period?

Previously, across other courses and chapters, you used to group observations by some columns. But can we do it with some time-series data? For example, can we summarize data by each week presented in dataset? Sounds like a complicated task.

Actually, pandas can handle even with that. There is .resample function available to group by different periods. Let's consider the structure of this function.

1
df.resample(rule, axis = 0, closed = None, label = None, convention = 'start', kind = None, loffset = None, base = None, on = None, level = None, origin = 'start_day', offset = None)
copy

The most important and the only one required argument is rule - the offset string or object representing target conversion. Easier, it's the period we want to divide our data by. There is a list of offset aliases used for resampling. You can find them in the table below the task.

Завдання

Swipe to start coding

  1. Set pickup_datetime column of df dataframe as an index of df.
  2. Calculate the number of trips each month available in dataset.

Рішення

AliasMeaning
BBusiness day frequency
CCustom business day frequency
DCalendar day frequency
WWeekly frequency
MMonth end frequency
QQuarter end frequency

There are many more aliases available. You can read about it in documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases (Offset aliases)

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 10
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?

Запитати АІ

expand
ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

book
Challenge: Group by Period?

Previously, across other courses and chapters, you used to group observations by some columns. But can we do it with some time-series data? For example, can we summarize data by each week presented in dataset? Sounds like a complicated task.

Actually, pandas can handle even with that. There is .resample function available to group by different periods. Let's consider the structure of this function.

1
df.resample(rule, axis = 0, closed = None, label = None, convention = 'start', kind = None, loffset = None, base = None, on = None, level = None, origin = 'start_day', offset = None)
copy

The most important and the only one required argument is rule - the offset string or object representing target conversion. Easier, it's the period we want to divide our data by. There is a list of offset aliases used for resampling. You can find them in the table below the task.

Завдання

Swipe to start coding

  1. Set pickup_datetime column of df dataframe as an index of df.
  2. Calculate the number of trips each month available in dataset.

Рішення

AliasMeaning
BBusiness day frequency
CCustom business day frequency
DCalendar day frequency
WWeekly frequency
MMonth end frequency
QQuarter end frequency

There are many more aliases available. You can read about it in documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases (Offset aliases)

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 10
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?
some-alt