Зміст курсу
Dealing with Dates and Times in Python
Dealing with Dates and Times in Python
3. Timezones and Daylight Savings Time (DST)
4. Working with Dates and Times in pandas
Challenge: What Will We Work With?Challenge: Converting Columns into datetime TypeChallenge: Extreme Trips DurationsChallenge: InvestigationChallenge: Negative Trip DurationChallenge: Is this Common Issue?Challenge: Fixing the IssuesChallenge: Average Metrics Across Taxi TypesChallenge: Corrected Metrics Across Taxi TypesChallenge: Group by Period?
Challenge: Average Metrics Across Taxi Types
Great! As for now, we have our dataset cleared from abnormally long rides and rides with ending time preceded starting. As we investigated, it happened because of misusage of 12 and 24-hour formats.
Let's try to find out some interesting insights from this dataset.
Завдання
Swipe to start coding
- Apply
.total_seconds()
function toduration
column usingmap
andlambda
functions. - Group observations by taxi type (
vendor_id
column). Then, choose columnsdist_meters
,duration
, and calculate mean. Then apply functionavg_m
todist_meters
andavg_dur
toduration
. The functions are defined in the code.
Рішення
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 4. Розділ 8
Challenge: Average Metrics Across Taxi Types
Great! As for now, we have our dataset cleared from abnormally long rides and rides with ending time preceded starting. As we investigated, it happened because of misusage of 12 and 24-hour formats.
Let's try to find out some interesting insights from this dataset.
Завдання
Swipe to start coding
- Apply
.total_seconds()
function toduration
column usingmap
andlambda
functions. - Group observations by taxi type (
vendor_id
column). Then, choose columnsdist_meters
,duration
, and calculate mean. Then apply functionavg_m
todist_meters
andavg_dur
toduration
. The functions are defined in the code.
Рішення
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 4. Розділ 8