Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Fit a Spring's Oscillation Data | Data Analysis and Visualization in Physics
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Physics Students

bookChallenge: Fit a Spring's Oscillation Data

In this challenge, you will work with displacement versus time data collected from a spring-mass system in oscillation. Your goal is to fit a sinusoidal model to the data, visualize both the raw measurements and the fitted curve, and analyze the quality of your fit by examining the residuals. This exercise will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

Завдання

Swipe to start coding

Write a Python function to analyze spring-mass oscillation data by fitting a sinusoidal model and visualizing the results. This task will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

  • Write a function that takes two arrays as input: one for time data and one for measured displacement data from a spring-mass oscillation experiment.
  • Fit the displacement versus time data to the sinusoidal model defined as A * sin(omega * t + phi) + C, where:
    • A is the amplitude;
    • omega is the angular frequency;
    • phi is the phase offset;
    • C is the vertical offset.
  • Use the scipy.optimize.curve_fit function to fit the model to the data.
  • Use the following initial parameter guesses for curve fitting:
    • Amplitude (A): half the range of the displacement data;
    • Angular frequency (omega): 2.0;
    • Phase offset (phi): 0;
    • Vertical offset (C): mean of the displacement data.
  • Plot both the original measured data (as points) and the fitted curve (as a line) on the same graph using matplotlib.pyplot.
  • Compute the residuals as the difference between the measured displacement values and the fitted values at each time point.
  • Plot the residuals as a function of time on a separate graph.
  • Return the fitted parameters and the residuals from your function.
  • Ensure your code is clear and well-structured, and that your plots include appropriate labels and titles.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 5
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

bookChallenge: Fit a Spring's Oscillation Data

Свайпніть щоб показати меню

In this challenge, you will work with displacement versus time data collected from a spring-mass system in oscillation. Your goal is to fit a sinusoidal model to the data, visualize both the raw measurements and the fitted curve, and analyze the quality of your fit by examining the residuals. This exercise will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

Завдання

Swipe to start coding

Write a Python function to analyze spring-mass oscillation data by fitting a sinusoidal model and visualizing the results. This task will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

  • Write a function that takes two arrays as input: one for time data and one for measured displacement data from a spring-mass oscillation experiment.
  • Fit the displacement versus time data to the sinusoidal model defined as A * sin(omega * t + phi) + C, where:
    • A is the amplitude;
    • omega is the angular frequency;
    • phi is the phase offset;
    • C is the vertical offset.
  • Use the scipy.optimize.curve_fit function to fit the model to the data.
  • Use the following initial parameter guesses for curve fitting:
    • Amplitude (A): half the range of the displacement data;
    • Angular frequency (omega): 2.0;
    • Phase offset (phi): 0;
    • Vertical offset (C): mean of the displacement data.
  • Plot both the original measured data (as points) and the fitted curve (as a line) on the same graph using matplotlib.pyplot.
  • Compute the residuals as the difference between the measured displacement values and the fitted values at each time point.
  • Plot the residuals as a function of time on a separate graph.
  • Return the fitted parameters and the residuals from your function.
  • Ensure your code is clear and well-structured, and that your plots include appropriate labels and titles.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 5
single

single

some-alt