Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Linear Regression with Two Features | Multiple Linear Regression
Linear Regression for ML

bookLinear Regression with Two Features

So far, we have looked at linear regression with only one feature. It is called simple linear regression. But in real-life tasks, the target usually depends on multiple features. Linear regression with more than one feature is called Multiple Linear Regression.

Two-feature Linear Regression Equation

In our example with heights, adding the mother's height as a feature to the model would likely improve our predictions.
But how do we add a new feature to the model? An equation defines linear regression, so we just need to add a new feature to an equation:

Visualization

When we discussed the simple regression model, we built the 2D plot where one axis is the feature, and the other is the target.
Now that we have two features, we need two axes for features and the third one for the target. So we are moving from a 2D space to a 3D one, which is much harder to visualize.
The video shows a 3D scatterplot of the dataset in our example.

But now, our equation is not an equation of a line.
It is an equation of a plane.
Here is a scatterplot along with the predicted plane:

You may have noticed that mathematically our equation hasn't become much harder.
But unfortunately, the visualization has.

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 1

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

Запитайте мені питання про цей предмет

Сумаризуйте цей розділ

Покажіть реальні приклади

Awesome!

Completion rate improved to 5.56

bookLinear Regression with Two Features

Свайпніть щоб показати меню

So far, we have looked at linear regression with only one feature. It is called simple linear regression. But in real-life tasks, the target usually depends on multiple features. Linear regression with more than one feature is called Multiple Linear Regression.

Two-feature Linear Regression Equation

In our example with heights, adding the mother's height as a feature to the model would likely improve our predictions.
But how do we add a new feature to the model? An equation defines linear regression, so we just need to add a new feature to an equation:

Visualization

When we discussed the simple regression model, we built the 2D plot where one axis is the feature, and the other is the target.
Now that we have two features, we need two axes for features and the third one for the target. So we are moving from a 2D space to a 3D one, which is much harder to visualize.
The video shows a 3D scatterplot of the dataset in our example.

But now, our equation is not an equation of a line.
It is an equation of a plane.
Here is a scatterplot along with the predicted plane:

You may have noticed that mathematically our equation hasn't become much harder.
But unfortunately, the visualization has.

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 1
some-alt