Challenge
For this challenge, the same housing dataset will be used.
However, now it has two features: age and area of the house (columns age
and square_feet
).
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
Your task is to build a Multiple Linear Regression model using the OLS
class. Also, you will print the summary table to look at the p-values of each feature.
Swipe to start coding
- Assign the
'age'
and'square_feet'
columns ofdf
toX
. - Build and train the model using the
LinearRegression
class. - Predict the target for
X_new
.
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Сумаризуйте цей розділ
Пояснити код у file
Пояснити, чому file не вирішує завдання
Awesome!
Completion rate improved to 5.56
Challenge
Свайпніть щоб показати меню
For this challenge, the same housing dataset will be used.
However, now it has two features: age and area of the house (columns age
and square_feet
).
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
Your task is to build a Multiple Linear Regression model using the OLS
class. Also, you will print the summary table to look at the p-values of each feature.
Swipe to start coding
- Assign the
'age'
and'square_feet'
columns ofdf
toX
. - Build and train the model using the
LinearRegression
class. - Predict the target for
X_new
.
Рішення
Дякуємо за ваш відгук!
Awesome!
Completion rate improved to 5.56single