Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: TF-IDF | Basic Text Models
Introduction to NLP

bookChallenge: TF-IDF

Завдання

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'medical' unigram in a TF-IDF model with unigrams, bigrams, and trigrams. To do this:

  1. Import the TfidfVectorizer class to create a TF-IDF model.
  2. Instantiate the TfidfVectorizer class as tfidf_vectorizer and configure it to include unigrams, bigrams, and trigrams.
  3. Use the appropriate method of tfidf_vectorizer to generate a TF-IDF matrix from the 'Document' column in the corpus and store the result in tfidf_matrix.
  4. Convert tfidf_matrix to a dense array and create a DataFrame from it, setting the unique features (terms) as its columns. Store the result in the tfidf_matrix_df variable.
  5. Display the vector for 'medical' as an array.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 8
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

Сумаризуйте цей розділ

Пояснити код у file

Пояснити, чому file не вирішує завдання

close

Awesome!

Completion rate improved to 3.45

bookChallenge: TF-IDF

Свайпніть щоб показати меню

Завдання

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'medical' unigram in a TF-IDF model with unigrams, bigrams, and trigrams. To do this:

  1. Import the TfidfVectorizer class to create a TF-IDF model.
  2. Instantiate the TfidfVectorizer class as tfidf_vectorizer and configure it to include unigrams, bigrams, and trigrams.
  3. Use the appropriate method of tfidf_vectorizer to generate a TF-IDF matrix from the 'Document' column in the corpus and store the result in tfidf_matrix.
  4. Convert tfidf_matrix to a dense array and create a DataFrame from it, setting the unique features (terms) as its columns. Store the result in the tfidf_matrix_df variable.
  5. Display the vector for 'medical' as an array.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

close

Awesome!

Completion rate improved to 3.45
Секція 3. Розділ 8
single

single

some-alt