Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Implementing a Random Forest | Random Forest
Classification with Python
course content

Зміст курсу

Classification with Python

Classification with Python

1. k-NN Classifier
2. Logistic Regression
3. Decision Tree
4. Random Forest
5. Comparing Models

book
Challenge: Implementing a Random Forest

In this chapter, you will build a Random Forest using the same titanic dataset.

Also, you will calculate the cross-validation accuracy using the cross_val_score() function

In the end, you will print the feature importances.
The feature_importances_ attribute only holds an array with importances without specifying the name of a feature.
To print the pairs ('name', importance), you can use the following syntax:

Завдання
test

Swipe to begin your solution

  1. Import the RandomForestClassifier class.
  2. Create an instance of a RandomForestClassifier class with default parameters and train it.
  3. Print the cross-validation score with the cv=10 of a random_forest you just built.
  4. Print each feature's importance along with its name.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 3
toggle bottom row

book
Challenge: Implementing a Random Forest

In this chapter, you will build a Random Forest using the same titanic dataset.

Also, you will calculate the cross-validation accuracy using the cross_val_score() function

In the end, you will print the feature importances.
The feature_importances_ attribute only holds an array with importances without specifying the name of a feature.
To print the pairs ('name', importance), you can use the following syntax:

Завдання
test

Swipe to begin your solution

  1. Import the RandomForestClassifier class.
  2. Create an instance of a RandomForestClassifier class with default parameters and train it.
  3. Print the cross-validation score with the cv=10 of a random_forest you just built.
  4. Print each feature's importance along with its name.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 3
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
We're sorry to hear that something went wrong. What happened?
some-alt