Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Creating Bar Plots | Data Visualization
Data Analysis with R

bookCreating Bar Plots

Why Use Bar Plots?

Bar plots are one of the most common ways to visualize categorical data. They help us quickly:

  • Compare counts or frequencies of categories;

  • Visualize group-wise summaries (like average price per fuel type);

  • Understand relationships between two categorical variables using grouped or stacked bars.

Whether you're showing the number of cars by fuel type or comparing transmission modes across fuels, bar plots make categorical comparisons clear and intuitive.

Bar Plot Syntax in ggplot2

ggplot(data = df, aes(x = category)) +
  geom_bar()
  • If only x is provided, geom_bar() automatically counts the number of observations;

  • If y is also provided, you need to add stat = "identity" to use actual values.

Example: Count of Cars by Fuel Type

ggplot(df, aes(x = fuel)) + 
  geom_bar(fill = "lightblue", color = "red") +
  labs(title = "Car Distribution by Fuel Type", x = "Fuel Type", y = "Count") +
  theme_minimal()

This plot shows the number of cars available for each type of fuel.

question mark

What does geom_bar() do when only the x variable is provided?

Select the correct answer

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 2

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

Can you explain the difference between stacked and grouped bar plots again?

How do I customize the colors and themes in my bar plots?

What are some common mistakes to avoid when creating bar plots?

Awesome!

Completion rate improved to 4

bookCreating Bar Plots

Свайпніть щоб показати меню

Why Use Bar Plots?

Bar plots are one of the most common ways to visualize categorical data. They help us quickly:

  • Compare counts or frequencies of categories;

  • Visualize group-wise summaries (like average price per fuel type);

  • Understand relationships between two categorical variables using grouped or stacked bars.

Whether you're showing the number of cars by fuel type or comparing transmission modes across fuels, bar plots make categorical comparisons clear and intuitive.

Bar Plot Syntax in ggplot2

ggplot(data = df, aes(x = category)) +
  geom_bar()
  • If only x is provided, geom_bar() automatically counts the number of observations;

  • If y is also provided, you need to add stat = "identity" to use actual values.

Example: Count of Cars by Fuel Type

ggplot(df, aes(x = fuel)) + 
  geom_bar(fill = "lightblue", color = "red") +
  labs(title = "Car Distribution by Fuel Type", x = "Fuel Type", y = "Count") +
  theme_minimal()

This plot shows the number of cars available for each type of fuel.

question mark

What does geom_bar() do when only the x variable is provided?

Select the correct answer

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 2
some-alt