Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Basic Operations: Linear Algebra | Tensors
Introduction to TensorFlow
course content

Зміст курсу

Introduction to TensorFlow

Introduction to TensorFlow

1. Tensors
2. Basics of TensorFlow

bookBasic Operations: Linear Algebra

Linear Algebra Operations

TensorFlow offers a suite of functions dedicated to linear algebra operations, making matrix operations straightforward.

Matrix Multiplication

Here's a quick reminder of how matrix multiplication works.

There are two equivalent approaches for matrix multiplication:

  • The tf.matmul() function;
  • Using the @ operator.
1234567891011121314
import tensorflow as tf # Create two matrices matrix1 = tf.constant([[1, 2], [3, 4], [2, 1]]) matrix2 = tf.constant([[2, 0, 2, 5], [2, 2, 1, 3]]) # Multiply the matrices product1 = tf.matmul(matrix1, matrix2) product2 = matrix1 @ matrix2 # Display tensors print(product1) print('-' * 50) print(product2)
copy

Note

Multiplying matrices of size 3x2 and 2x4 will give a matrix of 3x4.

Matrix Inversion

You can obtain the inverse of a matrix using the tf.linalg.inv() function. Additionally, let's verify a fundamental property of the inverse matrix.

123456789101112131415
import tensorflow as tf # Create 2x2 matrix matrix = tf.constant([[1., 2.], [3., 4.]]) # Compute the inverse of a matrix inverse_mat = tf.linalg.inv(matrix) # Check the result identity = matrix @ inverse_mat # Display tensors print(inverse_mat) print('-' * 50) print(identity)
copy

Note

Multiplying a matrix with its inverse should yield an identity matrix, which has ones on its main diagonal and zeros everywhere else. Additionally, the tf.linalg module offers a wide range of linear algebra functions. For further details or more advanced operations, you might want to refer to its official documentation.

Transpose

You can obtain a transposed matrix using the tf.transpose() function.

123456789101112
import tensorflow as tf # Create a matrix 3x2 matrix = tf.constant([[1, 2], [3, 4], [2, 1]]) # Get the transpose of a matrix transposed = tf.transpose(matrix) # Display tensors print(matrix) print('-' * 40) print(transposed)
copy

Dot Product

You can obtain a dot product using the tf.tensordot() function. By setting up an axes argument you can choose along which axes to calculate a dot product. E.g. for two vectors by setting up axes=1 you will get the classic dot product between vectors. But when setting axes=0 you will get broadcasted matrix along 0 axes:

1234567891011121314
import tensorflow as tf # Create two vectors matrix1 = tf.constant([1, 2, 3, 4]) matrix2 = tf.constant([2, 0, 2, 5]) # Compute the dot product of two tensors dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1) dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0) # Display tensors print(dot_product_axes1) print('-' * 40) print(dot_product_axes0)
copy

Note

If you take two matrices with appropriate dimensions (NxM @ MxK, where NxM represents the dimensions of the first matrix and MxK the second), and compute the dot product along axes=1, it essentially performs matrix multiplication.

Завдання

Background

A system of linear equations can be represented in matrix form using the equation:

AX = B

Where:

  • A is a matrix of coefficients.
  • X is a column matrix of variables.
  • B is a column matrix representing the values on the right side of the equations.

The solution to this system can be found using the formula:

X = A^-1 B

Where A^-1 is the inverse of matrix A.

Objective

Given a system of linear equations, use TensorFlow to solve it. You are given the following system of linear equations:

  1. 2x + 3y - z = 1.
  2. 4x + y + 2z = 2.
  3. -x + 2y + 3z = 3.
Dot Product
  1. Represent the system of equations in matrix form (separate it into matrices A and B).
  2. Using TensorFlow, find the inverse of matrix A.
  3. Multiply the inverse of matrix A by matrix B to find the solution matrix X, which contains the values of x, y, and z.

Note

Slicing in TensorFlow operates similarly to NumPy. Therefore, X[:, 0] will retrieve all elements from the column at index 0. We will get to the slicing later in the course.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 9
toggle bottom row

bookBasic Operations: Linear Algebra

Linear Algebra Operations

TensorFlow offers a suite of functions dedicated to linear algebra operations, making matrix operations straightforward.

Matrix Multiplication

Here's a quick reminder of how matrix multiplication works.

There are two equivalent approaches for matrix multiplication:

  • The tf.matmul() function;
  • Using the @ operator.
1234567891011121314
import tensorflow as tf # Create two matrices matrix1 = tf.constant([[1, 2], [3, 4], [2, 1]]) matrix2 = tf.constant([[2, 0, 2, 5], [2, 2, 1, 3]]) # Multiply the matrices product1 = tf.matmul(matrix1, matrix2) product2 = matrix1 @ matrix2 # Display tensors print(product1) print('-' * 50) print(product2)
copy

Note

Multiplying matrices of size 3x2 and 2x4 will give a matrix of 3x4.

Matrix Inversion

You can obtain the inverse of a matrix using the tf.linalg.inv() function. Additionally, let's verify a fundamental property of the inverse matrix.

123456789101112131415
import tensorflow as tf # Create 2x2 matrix matrix = tf.constant([[1., 2.], [3., 4.]]) # Compute the inverse of a matrix inverse_mat = tf.linalg.inv(matrix) # Check the result identity = matrix @ inverse_mat # Display tensors print(inverse_mat) print('-' * 50) print(identity)
copy

Note

Multiplying a matrix with its inverse should yield an identity matrix, which has ones on its main diagonal and zeros everywhere else. Additionally, the tf.linalg module offers a wide range of linear algebra functions. For further details or more advanced operations, you might want to refer to its official documentation.

Transpose

You can obtain a transposed matrix using the tf.transpose() function.

123456789101112
import tensorflow as tf # Create a matrix 3x2 matrix = tf.constant([[1, 2], [3, 4], [2, 1]]) # Get the transpose of a matrix transposed = tf.transpose(matrix) # Display tensors print(matrix) print('-' * 40) print(transposed)
copy

Dot Product

You can obtain a dot product using the tf.tensordot() function. By setting up an axes argument you can choose along which axes to calculate a dot product. E.g. for two vectors by setting up axes=1 you will get the classic dot product between vectors. But when setting axes=0 you will get broadcasted matrix along 0 axes:

1234567891011121314
import tensorflow as tf # Create two vectors matrix1 = tf.constant([1, 2, 3, 4]) matrix2 = tf.constant([2, 0, 2, 5]) # Compute the dot product of two tensors dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1) dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0) # Display tensors print(dot_product_axes1) print('-' * 40) print(dot_product_axes0)
copy

Note

If you take two matrices with appropriate dimensions (NxM @ MxK, where NxM represents the dimensions of the first matrix and MxK the second), and compute the dot product along axes=1, it essentially performs matrix multiplication.

Завдання

Background

A system of linear equations can be represented in matrix form using the equation:

AX = B

Where:

  • A is a matrix of coefficients.
  • X is a column matrix of variables.
  • B is a column matrix representing the values on the right side of the equations.

The solution to this system can be found using the formula:

X = A^-1 B

Where A^-1 is the inverse of matrix A.

Objective

Given a system of linear equations, use TensorFlow to solve it. You are given the following system of linear equations:

  1. 2x + 3y - z = 1.
  2. 4x + y + 2z = 2.
  3. -x + 2y + 3z = 3.
Dot Product
  1. Represent the system of equations in matrix form (separate it into matrices A and B).
  2. Using TensorFlow, find the inverse of matrix A.
  3. Multiply the inverse of matrix A by matrix B to find the solution matrix X, which contains the values of x, y, and z.

Note

Slicing in TensorFlow operates similarly to NumPy. Therefore, X[:, 0] will retrieve all elements from the column at index 0. We will get to the slicing later in the course.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 9
toggle bottom row

bookBasic Operations: Linear Algebra

Linear Algebra Operations

TensorFlow offers a suite of functions dedicated to linear algebra operations, making matrix operations straightforward.

Matrix Multiplication

Here's a quick reminder of how matrix multiplication works.

There are two equivalent approaches for matrix multiplication:

  • The tf.matmul() function;
  • Using the @ operator.
1234567891011121314
import tensorflow as tf # Create two matrices matrix1 = tf.constant([[1, 2], [3, 4], [2, 1]]) matrix2 = tf.constant([[2, 0, 2, 5], [2, 2, 1, 3]]) # Multiply the matrices product1 = tf.matmul(matrix1, matrix2) product2 = matrix1 @ matrix2 # Display tensors print(product1) print('-' * 50) print(product2)
copy

Note

Multiplying matrices of size 3x2 and 2x4 will give a matrix of 3x4.

Matrix Inversion

You can obtain the inverse of a matrix using the tf.linalg.inv() function. Additionally, let's verify a fundamental property of the inverse matrix.

123456789101112131415
import tensorflow as tf # Create 2x2 matrix matrix = tf.constant([[1., 2.], [3., 4.]]) # Compute the inverse of a matrix inverse_mat = tf.linalg.inv(matrix) # Check the result identity = matrix @ inverse_mat # Display tensors print(inverse_mat) print('-' * 50) print(identity)
copy

Note

Multiplying a matrix with its inverse should yield an identity matrix, which has ones on its main diagonal and zeros everywhere else. Additionally, the tf.linalg module offers a wide range of linear algebra functions. For further details or more advanced operations, you might want to refer to its official documentation.

Transpose

You can obtain a transposed matrix using the tf.transpose() function.

123456789101112
import tensorflow as tf # Create a matrix 3x2 matrix = tf.constant([[1, 2], [3, 4], [2, 1]]) # Get the transpose of a matrix transposed = tf.transpose(matrix) # Display tensors print(matrix) print('-' * 40) print(transposed)
copy

Dot Product

You can obtain a dot product using the tf.tensordot() function. By setting up an axes argument you can choose along which axes to calculate a dot product. E.g. for two vectors by setting up axes=1 you will get the classic dot product between vectors. But when setting axes=0 you will get broadcasted matrix along 0 axes:

1234567891011121314
import tensorflow as tf # Create two vectors matrix1 = tf.constant([1, 2, 3, 4]) matrix2 = tf.constant([2, 0, 2, 5]) # Compute the dot product of two tensors dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1) dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0) # Display tensors print(dot_product_axes1) print('-' * 40) print(dot_product_axes0)
copy

Note

If you take two matrices with appropriate dimensions (NxM @ MxK, where NxM represents the dimensions of the first matrix and MxK the second), and compute the dot product along axes=1, it essentially performs matrix multiplication.

Завдання

Background

A system of linear equations can be represented in matrix form using the equation:

AX = B

Where:

  • A is a matrix of coefficients.
  • X is a column matrix of variables.
  • B is a column matrix representing the values on the right side of the equations.

The solution to this system can be found using the formula:

X = A^-1 B

Where A^-1 is the inverse of matrix A.

Objective

Given a system of linear equations, use TensorFlow to solve it. You are given the following system of linear equations:

  1. 2x + 3y - z = 1.
  2. 4x + y + 2z = 2.
  3. -x + 2y + 3z = 3.
Dot Product
  1. Represent the system of equations in matrix form (separate it into matrices A and B).
  2. Using TensorFlow, find the inverse of matrix A.
  3. Multiply the inverse of matrix A by matrix B to find the solution matrix X, which contains the values of x, y, and z.

Note

Slicing in TensorFlow operates similarly to NumPy. Therefore, X[:, 0] will retrieve all elements from the column at index 0. We will get to the slicing later in the course.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Linear Algebra Operations

TensorFlow offers a suite of functions dedicated to linear algebra operations, making matrix operations straightforward.

Matrix Multiplication

Here's a quick reminder of how matrix multiplication works.

There are two equivalent approaches for matrix multiplication:

  • The tf.matmul() function;
  • Using the @ operator.
1234567891011121314
import tensorflow as tf # Create two matrices matrix1 = tf.constant([[1, 2], [3, 4], [2, 1]]) matrix2 = tf.constant([[2, 0, 2, 5], [2, 2, 1, 3]]) # Multiply the matrices product1 = tf.matmul(matrix1, matrix2) product2 = matrix1 @ matrix2 # Display tensors print(product1) print('-' * 50) print(product2)
copy

Note

Multiplying matrices of size 3x2 and 2x4 will give a matrix of 3x4.

Matrix Inversion

You can obtain the inverse of a matrix using the tf.linalg.inv() function. Additionally, let's verify a fundamental property of the inverse matrix.

123456789101112131415
import tensorflow as tf # Create 2x2 matrix matrix = tf.constant([[1., 2.], [3., 4.]]) # Compute the inverse of a matrix inverse_mat = tf.linalg.inv(matrix) # Check the result identity = matrix @ inverse_mat # Display tensors print(inverse_mat) print('-' * 50) print(identity)
copy

Note

Multiplying a matrix with its inverse should yield an identity matrix, which has ones on its main diagonal and zeros everywhere else. Additionally, the tf.linalg module offers a wide range of linear algebra functions. For further details or more advanced operations, you might want to refer to its official documentation.

Transpose

You can obtain a transposed matrix using the tf.transpose() function.

123456789101112
import tensorflow as tf # Create a matrix 3x2 matrix = tf.constant([[1, 2], [3, 4], [2, 1]]) # Get the transpose of a matrix transposed = tf.transpose(matrix) # Display tensors print(matrix) print('-' * 40) print(transposed)
copy

Dot Product

You can obtain a dot product using the tf.tensordot() function. By setting up an axes argument you can choose along which axes to calculate a dot product. E.g. for two vectors by setting up axes=1 you will get the classic dot product between vectors. But when setting axes=0 you will get broadcasted matrix along 0 axes:

1234567891011121314
import tensorflow as tf # Create two vectors matrix1 = tf.constant([1, 2, 3, 4]) matrix2 = tf.constant([2, 0, 2, 5]) # Compute the dot product of two tensors dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1) dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0) # Display tensors print(dot_product_axes1) print('-' * 40) print(dot_product_axes0)
copy

Note

If you take two matrices with appropriate dimensions (NxM @ MxK, where NxM represents the dimensions of the first matrix and MxK the second), and compute the dot product along axes=1, it essentially performs matrix multiplication.

Завдання

Background

A system of linear equations can be represented in matrix form using the equation:

AX = B

Where:

  • A is a matrix of coefficients.
  • X is a column matrix of variables.
  • B is a column matrix representing the values on the right side of the equations.

The solution to this system can be found using the formula:

X = A^-1 B

Where A^-1 is the inverse of matrix A.

Objective

Given a system of linear equations, use TensorFlow to solve it. You are given the following system of linear equations:

  1. 2x + 3y - z = 1.
  2. 4x + y + 2z = 2.
  3. -x + 2y + 3z = 3.
Dot Product
  1. Represent the system of equations in matrix form (separate it into matrices A and B).
  2. Using TensorFlow, find the inverse of matrix A.
  3. Multiply the inverse of matrix A by matrix B to find the solution matrix X, which contains the values of x, y, and z.

Note

Slicing in TensorFlow operates similarly to NumPy. Therefore, X[:, 0] will retrieve all elements from the column at index 0. We will get to the slicing later in the course.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 1. Розділ 9
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
some-alt