Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Simple Moving Average | Stationary Models
Time Series Analysis

book
Simple Moving Average

Mathematically, the simple moving average model is represented as follows:

In this equation, the prediction SMA consists of variables, where k is the window size (how many past values we will take to calculate the next value), and p is the value taken.

How does this model work? In fact, the simple moving average at each prediction moment calculates the average of several past values - the resulting number is the next prediction. You can imagine a graph on the path of which a window of size n moves (you can take 2 values, you can take 3, etc.). The smaller the window, the smoother the predictions. Let's demonstrate it below:

In the first image, the window size for which the average value is calculated is 8, while on the second graph, n = 3. The smaller the window, the fewer peaks it can capture.

Python allows you to implement this model like this:

python
import matplotlib.pyplot as plt
import pandas as pd

# Calculate predictions
t_average = df["value"].rolling(window=8).mean()

# Plot results
plt.figure(figsize=(10, 5))
plt.plot(df["value"][:50], "k-", label="Original")
plt.plot(t_average[:50], "r-", label="Running average")
plt.ylabel("NO2")
plt.xlabel("Date")
plt.grid(linestyle=":")
plt.legend(loc="upper left")
plt.show()

rolling() - a function used to calculate the moving average.

The simple moving average is one of the simplest models, so it is enough to use the pandas library to implement it.

Завдання

Swipe to start coding

Make predictions for dataset pr_air_quality.csv with window size 5.

  1. Convert the "date.utc" column to datetime type.
  2. Calculate moving averages using moving windows with the size of 5.
  3. Compare the results on a plot: visualize the first 50 values of the "value" column of the df within the first call of the .plot() function and the first 50 values of the pred within the second call.
  4. Display the legend and the plot.

Рішення

# Importing libraries
import pandas as pd
import matplotlib.pyplot as plt

# Reading dataset
df = pd.read_csv("https://codefinity-content-media.s3.eu-west-1.amazonaws.com/943e906e-4de6-4694-a1df-313ceed7cfe7/pr_air_quality.csv")

# Transform "date.utc" column to datetime
df["date.utc"] = pd.to_datetime(df["date.utc"])

# Create moving average model
pred = df["value"].rolling(window=5).mean()

# Visualize results
plt.figure(figsize=(10, 5))
plt.plot(df["value"][:50], "k-", label="Original")
plt.plot(pred[:50], "r-", label="Predictions")

# Adding legend and displaying the plot
plt.legend()
plt.show()

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 2
# Importing libraries
import pandas as pd
import matplotlib.pyplot as plt

# Reading dataset
df = pd.read_csv("https://codefinity-content-media.s3.eu-west-1.amazonaws.com/943e906e-4de6-4694-a1df-313ceed7cfe7/pr_air_quality.csv")

# Transform "date.utc" column to datetime
df["date.utc"] = pd.___(df["date.utc"])

# Create moving average model
pred = df["value"].___(window=___).___()

# Visualize results
plt.figure(figsize=(10, 5))
plt.plot(___[:50], "k-", label="Original")
plt.plot(___[:50], "r-", label="Predictions")

# Adding legend and displaying the plot
plt.___()
___
toggle bottom row
some-alt