Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Solving Task Using Bagging Classifier | Commonly Used Bagging Models
Ensemble Learning
course content

Зміст курсу

Ensemble Learning

Ensemble Learning

1. Basic Principles of Building Ensemble Models
2. Commonly Used Bagging Models
3. Commonly Used Boosting Models
4. Commonly Used Stacking Models

bookChallenge: Solving Task Using Bagging Classifier

Завдання

The load_breast_cancer dataset is a built-in dataset provided by scikit-learn. It is commonly used for binary classification tasks, particularly in the context of breast cancer diagnosis. This dataset contains features that are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The aim is to predict whether a given mass is malignant (cancerous) or benign (non-cancerous).

Your task is to solve the classification problem using BaggingClassifier on load_breast_cancer dataset:

  1. Create an instance of BaggingClassifier class: specify base SVC (Support Vector Classifier) model and set the number of base estimators equal to 10.
  2. Fit the ensemble model.
  3. Get the final result using soft voting technique: for each sample in test dataset get the probability matrix and find the class with maximum probability.

Once you've completed this task, click the button below the code to check your solution.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 2
toggle bottom row

bookChallenge: Solving Task Using Bagging Classifier

Завдання

The load_breast_cancer dataset is a built-in dataset provided by scikit-learn. It is commonly used for binary classification tasks, particularly in the context of breast cancer diagnosis. This dataset contains features that are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The aim is to predict whether a given mass is malignant (cancerous) or benign (non-cancerous).

Your task is to solve the classification problem using BaggingClassifier on load_breast_cancer dataset:

  1. Create an instance of BaggingClassifier class: specify base SVC (Support Vector Classifier) model and set the number of base estimators equal to 10.
  2. Fit the ensemble model.
  3. Get the final result using soft voting technique: for each sample in test dataset get the probability matrix and find the class with maximum probability.

Once you've completed this task, click the button below the code to check your solution.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 2
toggle bottom row

bookChallenge: Solving Task Using Bagging Classifier

Завдання

The load_breast_cancer dataset is a built-in dataset provided by scikit-learn. It is commonly used for binary classification tasks, particularly in the context of breast cancer diagnosis. This dataset contains features that are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The aim is to predict whether a given mass is malignant (cancerous) or benign (non-cancerous).

Your task is to solve the classification problem using BaggingClassifier on load_breast_cancer dataset:

  1. Create an instance of BaggingClassifier class: specify base SVC (Support Vector Classifier) model and set the number of base estimators equal to 10.
  2. Fit the ensemble model.
  3. Get the final result using soft voting technique: for each sample in test dataset get the probability matrix and find the class with maximum probability.

Once you've completed this task, click the button below the code to check your solution.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Завдання

The load_breast_cancer dataset is a built-in dataset provided by scikit-learn. It is commonly used for binary classification tasks, particularly in the context of breast cancer diagnosis. This dataset contains features that are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The aim is to predict whether a given mass is malignant (cancerous) or benign (non-cancerous).

Your task is to solve the classification problem using BaggingClassifier on load_breast_cancer dataset:

  1. Create an instance of BaggingClassifier class: specify base SVC (Support Vector Classifier) model and set the number of base estimators equal to 10.
  2. Fit the ensemble model.
  3. Get the final result using soft voting technique: for each sample in test dataset get the probability matrix and find the class with maximum probability.

Once you've completed this task, click the button below the code to check your solution.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 2. Розділ 2
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
some-alt