Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Solving Task Using Stacking Regressor | Commonly Used Stacking Models
Ensemble Learning
course content

Зміст курсу

Ensemble Learning

Ensemble Learning

1. Basic Principles of Building Ensemble Models
2. Commonly Used Bagging Models
3. Commonly Used Boosting Models
4. Commonly Used Stacking Models

book
Challenge: Solving Task Using Stacking Regressor

Stacking Regressor is a stacking ensemble learning model used to solve regression tasks. The principle of work of this model is similar to the Stacking Classifier: the only difference is that we use regression algorithms as the base and meta-models of the ensemble.
We can use the StackingRegressor class from the sklearn library to implement this model in Python.

Завдання
test

Swipe to show code editor

The make_friedman1 dataset is a synthetic dataset frequently used for regression tasks in machine learning. This dataset is widely used in regression tutorials and experimentation because it's simple, yet it can be customized with different noise levels and feature dimensions to simulate various regression scenarios.

Your task is to solve the regression task on the Friedman dataset using Stacking Regressor:

  1. Provide split on train and test subsets of the training set: the proportion of the dataset to be included in the test split must be 0.2.
  2. Use Decision Tree Regressor with max_depth equals 3 as one of the base models.
  3. Create a Stacking Regressor model using base models and meta model.
  4. Fit Stacking Regressor model on the training data.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 3
toggle bottom row

book
Challenge: Solving Task Using Stacking Regressor

Stacking Regressor is a stacking ensemble learning model used to solve regression tasks. The principle of work of this model is similar to the Stacking Classifier: the only difference is that we use regression algorithms as the base and meta-models of the ensemble.
We can use the StackingRegressor class from the sklearn library to implement this model in Python.

Завдання
test

Swipe to show code editor

The make_friedman1 dataset is a synthetic dataset frequently used for regression tasks in machine learning. This dataset is widely used in regression tutorials and experimentation because it's simple, yet it can be customized with different noise levels and feature dimensions to simulate various regression scenarios.

Your task is to solve the regression task on the Friedman dataset using Stacking Regressor:

  1. Provide split on train and test subsets of the training set: the proportion of the dataset to be included in the test split must be 0.2.
  2. Use Decision Tree Regressor with max_depth equals 3 as one of the base models.
  3. Create a Stacking Regressor model using base models and meta model.
  4. Fit Stacking Regressor model on the training data.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 3
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
We're sorry to hear that something went wrong. What happened?
some-alt