Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge 1: Visualizing Distributions | Seaborn
Data Science Interview Challenge
course content

Зміст курсу

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

book
Challenge 1: Visualizing Distributions

Understanding how data is distributed is fundamental in the data analysis process. Distributions help us to visualize the central tendencies, variability, and the presence of any outliers in our dataset. Seaborn, a statistical plotting library built on top of Matplotlib, provides a suite of tools that makes visualizing distributions a breeze.

The various plots and tools under Seaborn's distribution utilities can:

  • Examine the distribution of a dataset.
  • Visualize the relationship between multiple variables.
  • Display the underlying probability distributions of datasets.

Using Seaborn to create distribution plots ensures that the viewer can get a comprehensive view of the data's distribution and its characteristics.

Завдання
test

Swipe to show code editor

Using Seaborn, visualize the distribution of a dataset:

  1. Plot a univariate distribution of data using a histogram and overlay it with a kernel density estimate (KDE).
  2. Visualize the bivariate distribution between two variables using a scatter plot and include a KDE plot to see the data's density.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 5. Розділ 1
toggle bottom row

book
Challenge 1: Visualizing Distributions

Understanding how data is distributed is fundamental in the data analysis process. Distributions help us to visualize the central tendencies, variability, and the presence of any outliers in our dataset. Seaborn, a statistical plotting library built on top of Matplotlib, provides a suite of tools that makes visualizing distributions a breeze.

The various plots and tools under Seaborn's distribution utilities can:

  • Examine the distribution of a dataset.
  • Visualize the relationship between multiple variables.
  • Display the underlying probability distributions of datasets.

Using Seaborn to create distribution plots ensures that the viewer can get a comprehensive view of the data's distribution and its characteristics.

Завдання
test

Swipe to show code editor

Using Seaborn, visualize the distribution of a dataset:

  1. Plot a univariate distribution of data using a histogram and overlay it with a kernel density estimate (KDE).
  2. Visualize the bivariate distribution between two variables using a scatter plot and include a KDE plot to see the data's density.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 5. Розділ 1
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
We're sorry to hear that something went wrong. What happened?
some-alt