Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge 4: Cross-validation | Scikit-learn
Data Science Interview Challenge
course content

Зміст курсу

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

book
Challenge 4: Cross-validation

Cross-validation is a pivotal technique in machine learning that aims to assess the generalization performance of a model on unseen data. Given the inherent risk of overfitting a model to a particular dataset cross-validation offers a solution. By partitioning the original dataset into multiple subsets, the model is trained on some of these subsets and tested on the others.

By rotating the testing fold and averaging the results across all iterations, we gain a more robust estimate of the model's performance. This iterative process not only provides insights into the model's potential variability and bias but also aids in mitigating overfitting, ensuring that the model has a balanced performance across different subsets of the data.

Завдання
test

Swipe to show code editor

Implement a pipeline that combines data preprocessing and model training. After establishing the pipeline, utilize cross-validation to assess the performance of a classifier on the Wine dataset.

  1. Create a pipeline that includes standard scaling and decision tree classifier.
  2. Apply 5-fold cross-validation on the pipeline.
  3. Calculate the average accuracy across all folds.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 7. Розділ 4
toggle bottom row

book
Challenge 4: Cross-validation

Cross-validation is a pivotal technique in machine learning that aims to assess the generalization performance of a model on unseen data. Given the inherent risk of overfitting a model to a particular dataset cross-validation offers a solution. By partitioning the original dataset into multiple subsets, the model is trained on some of these subsets and tested on the others.

By rotating the testing fold and averaging the results across all iterations, we gain a more robust estimate of the model's performance. This iterative process not only provides insights into the model's potential variability and bias but also aids in mitigating overfitting, ensuring that the model has a balanced performance across different subsets of the data.

Завдання
test

Swipe to show code editor

Implement a pipeline that combines data preprocessing and model training. After establishing the pipeline, utilize cross-validation to assess the performance of a classifier on the Wine dataset.

  1. Create a pipeline that includes standard scaling and decision tree classifier.
  2. Apply 5-fold cross-validation on the pipeline.
  3. Calculate the average accuracy across all folds.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 7. Розділ 4
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
We're sorry to hear that something went wrong. What happened?
some-alt