Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Choosing Optimal Data Structures | Efficient Use of Data Structures
Optimization Techniques in Python
course content

Зміст курсу

Optimization Techniques in Python

Optimization Techniques in Python

1. Understanding and Measuring Performance
2. Efficient Use of Data Structures
3. Optimizing with Python's Built-in Features

bookChallenge: Choosing Optimal Data Structures

Завдання

Your task is to choose the most appropriate data structure (list, ndarray, set, or tuple) for each of the different scenarios below. Based on the nature of the data and the specific requirements for each collection, fill in the blanks (___) to create the correct data structures. Make sure to use the appropriate brackets for each structure, and if creating a NumPy array, initialize it based on a list.

Here are the requirements:

  1. For monthly_sales, the data is numerical, and you will need to perform frequent calculations on it.
  2. user_ids, each ID should be unique, and you will need to frequently check if a certain ID is present.
  3. product should be a fixed (unchangeable) record.
  4. tasks should be an ordered collection and allow for frequent additions and removals.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 3
toggle bottom row

bookChallenge: Choosing Optimal Data Structures

Завдання

Your task is to choose the most appropriate data structure (list, ndarray, set, or tuple) for each of the different scenarios below. Based on the nature of the data and the specific requirements for each collection, fill in the blanks (___) to create the correct data structures. Make sure to use the appropriate brackets for each structure, and if creating a NumPy array, initialize it based on a list.

Here are the requirements:

  1. For monthly_sales, the data is numerical, and you will need to perform frequent calculations on it.
  2. user_ids, each ID should be unique, and you will need to frequently check if a certain ID is present.
  3. product should be a fixed (unchangeable) record.
  4. tasks should be an ordered collection and allow for frequent additions and removals.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 3
toggle bottom row

bookChallenge: Choosing Optimal Data Structures

Завдання

Your task is to choose the most appropriate data structure (list, ndarray, set, or tuple) for each of the different scenarios below. Based on the nature of the data and the specific requirements for each collection, fill in the blanks (___) to create the correct data structures. Make sure to use the appropriate brackets for each structure, and if creating a NumPy array, initialize it based on a list.

Here are the requirements:

  1. For monthly_sales, the data is numerical, and you will need to perform frequent calculations on it.
  2. user_ids, each ID should be unique, and you will need to frequently check if a certain ID is present.
  3. product should be a fixed (unchangeable) record.
  4. tasks should be an ordered collection and allow for frequent additions and removals.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Завдання

Your task is to choose the most appropriate data structure (list, ndarray, set, or tuple) for each of the different scenarios below. Based on the nature of the data and the specific requirements for each collection, fill in the blanks (___) to create the correct data structures. Make sure to use the appropriate brackets for each structure, and if creating a NumPy array, initialize it based on a list.

Here are the requirements:

  1. For monthly_sales, the data is numerical, and you will need to perform frequent calculations on it.
  2. user_ids, each ID should be unique, and you will need to frequently check if a certain ID is present.
  3. product should be a fixed (unchangeable) record.
  4. tasks should be an ordered collection and allow for frequent additions and removals.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 2. Розділ 3
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
some-alt