Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Scikit-learn для PCA | Побудова моделі
Метод Головних Компонент

Свайпніть щоб показати меню

book
Scikit-learn для PCA

Ми розібралися з реалізацією алгоритму PCA за допомогою бібліотеки numpy. За допомогою Scikit-learn ми можемо почати використовувати цей метод всього з одного рядка коду:

python

PCA - це клас бібліотеки scikit-learn. Він містить більше 5 аргументів, але нас найбільше цікавить лише один - n_components. Цей аргумент відповідає за кількість основних компонентів, які ми хочемо отримати. Єдина умова - кількість компонент, звичайно ж, має бути не меншою за кількість змінних у наборі даних. Клас PCA містить 2 основні методи, які ми будемо використовувати: fit і transform. Метод fit() завантажує дані в клас, а метод transform() перетворює їх, і ми отримуємо результат роботи алгоритму PCA. Якщо ми хочемо об'єднати ці 2 операції, використаємо метод fit_transform():

python

Якщо ми хочемо отримати компоненти, які обчислив алгоритм, виклимо атрибут .components_:

python
Завдання

Swipe to start coding

Імпортувати клас PCA з бібліотеки scikit-learn і створити PCA модель для набору даних iris з 2 компонентами.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 1
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?

Запитати АІ

expand
ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

book
Scikit-learn для PCA

Ми розібралися з реалізацією алгоритму PCA за допомогою бібліотеки numpy. За допомогою Scikit-learn ми можемо почати використовувати цей метод всього з одного рядка коду:

python

PCA - це клас бібліотеки scikit-learn. Він містить більше 5 аргументів, але нас найбільше цікавить лише один - n_components. Цей аргумент відповідає за кількість основних компонентів, які ми хочемо отримати. Єдина умова - кількість компонент, звичайно ж, має бути не меншою за кількість змінних у наборі даних. Клас PCA містить 2 основні методи, які ми будемо використовувати: fit і transform. Метод fit() завантажує дані в клас, а метод transform() перетворює їх, і ми отримуємо результат роботи алгоритму PCA. Якщо ми хочемо об'єднати ці 2 операції, використаємо метод fit_transform():

python

Якщо ми хочемо отримати компоненти, які обчислив алгоритм, виклимо атрибут .components_:

python
Завдання

Swipe to start coding

Імпортувати клас PCA з бібліотеки scikit-learn і створити PCA модель для набору даних iris з 2 компонентами.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 1
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?
some-alt