Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Власні значення та власні вектори | Основні поняття РСА
Метод Головних Компонент

bookВласні значення та власні вектори

Перейдемо до більш складних понять: власні значення (Eigenvalues) та власні вектори (Eigenvectors). На цьому кроці потрібно обчислити власні значення та власні вектори з коваріаційної матриці, щоб отримати головні компоненти.

Першим кроком є обчислення власних значень коваріаційної матриці. Вже на основі власних значень обчислюються власні вектори.

Отримані значення є власними векторами (тобто головними компонентами), які вирішують математичну задачу пошуку напрямку осей, що максимізує дисперсію між точками даних уздовж цього напрямку. Щоб полегшити розуміння, просто уявіть, що отримані головні компоненти - це новий, більш зручний спосіб представлення даних, новий кут, під яким відмінності в даних стають для нас більш помітними.

На виході ми отримаємо стільки ж компонент, скільки спочатку було змінних у наборі даних. Наприклад, набір даних з 20 змінними на цьому етапі отримає 20 головних компонент.

Основна деталь полягає в тому, що кожен власний вектор має власну пару власних значень. Чим більше власне значення, тим вища значущість результуючої головної компоненти (власного вектора). Перша компонента зберігає найважливішу інформацію, друга - трохи менше, і так далі.

Чому власні вектори відіграють таку важливу роль у формуванні головних компонент - складне питання, відповідь на яке потребує довгого математичного доведення. Наразі нам просто потрібно знати, що це працює.

Давайте використаємо numpy для обчислення власних значень та власних векторів:

eigen_values, eigen_vectors = np.linalg.eig(cov_mat)
Завдання

Swipe to start coding

Відсортувати отримані головні компоненти (власні вектори) у порядку спадання їх значень за допомогою списку ind (індекси відсортованих результатів) і вивести результат.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 3
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

Сумаризуйте цей розділ

Пояснити код у file

Пояснити, чому file не вирішує завдання

close

Awesome!

Completion rate improved to 5.26

bookВласні значення та власні вектори

Свайпніть щоб показати меню

Перейдемо до більш складних понять: власні значення (Eigenvalues) та власні вектори (Eigenvectors). На цьому кроці потрібно обчислити власні значення та власні вектори з коваріаційної матриці, щоб отримати головні компоненти.

Першим кроком є обчислення власних значень коваріаційної матриці. Вже на основі власних значень обчислюються власні вектори.

Отримані значення є власними векторами (тобто головними компонентами), які вирішують математичну задачу пошуку напрямку осей, що максимізує дисперсію між точками даних уздовж цього напрямку. Щоб полегшити розуміння, просто уявіть, що отримані головні компоненти - це новий, більш зручний спосіб представлення даних, новий кут, під яким відмінності в даних стають для нас більш помітними.

На виході ми отримаємо стільки ж компонент, скільки спочатку було змінних у наборі даних. Наприклад, набір даних з 20 змінними на цьому етапі отримає 20 головних компонент.

Основна деталь полягає в тому, що кожен власний вектор має власну пару власних значень. Чим більше власне значення, тим вища значущість результуючої головної компоненти (власного вектора). Перша компонента зберігає найважливішу інформацію, друга - трохи менше, і так далі.

Чому власні вектори відіграють таку важливу роль у формуванні головних компонент - складне питання, відповідь на яке потребує довгого математичного доведення. Наразі нам просто потрібно знати, що це працює.

Давайте використаємо numpy для обчислення власних значень та власних векторів:

eigen_values, eigen_vectors = np.linalg.eig(cov_mat)
Завдання

Swipe to start coding

Відсортувати отримані головні компоненти (власні вектори) у порядку спадання їх значень за допомогою списку ind (індекси відсортованих результатів) і вивести результат.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

close

Awesome!

Completion rate improved to 5.26
Секція 2. Розділ 3
single

single

some-alt