Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Evaluation Before and After Calibration | Calibration Methods in Practice
Quizzes & Challenges
Quizzes
Challenges
/
Model Calibration with Python

bookEvaluation Before and After Calibration

Завдання

Swipe to start coding

In this challenge, you will evaluate a classifier before and after probability calibration. You will train a logistic regression classifier on a binary dataset, compute predicted probabilities, and measure:

  • Brier score
  • Expected Calibration Error (ECE)
  • Calibration curve points

You will then apply isotonic regression calibration using CalibratedClassifierCV, recompute the same metrics, and compare the results.

Your goal:

  1. Train a logistic regression classifier on the dataset.

  2. Generate uncalibrated predicted probabilities.

  3. Apply isotonic calibration using CalibratedClassifierCV.

  4. Compute Brier score and a simple ECE metric before and after calibration.

  5. Print the results as two values:

    • brier_before, brier_after
    • ece_before, ece_after

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 6
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

bookEvaluation Before and After Calibration

Свайпніть щоб показати меню

Завдання

Swipe to start coding

In this challenge, you will evaluate a classifier before and after probability calibration. You will train a logistic regression classifier on a binary dataset, compute predicted probabilities, and measure:

  • Brier score
  • Expected Calibration Error (ECE)
  • Calibration curve points

You will then apply isotonic regression calibration using CalibratedClassifierCV, recompute the same metrics, and compare the results.

Your goal:

  1. Train a logistic regression classifier on the dataset.

  2. Generate uncalibrated predicted probabilities.

  3. Apply isotonic calibration using CalibratedClassifierCV.

  4. Compute Brier score and a simple ECE metric before and after calibration.

  5. Print the results as two values:

    • brier_before, brier_after
    • ece_before, ece_after

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 6
single

single

some-alt